Multi-sample evolution of robust black-box search algorithms

Black-Box Search Algorithms (BBSAs) tailored to a specific problem class may be expected to significantly outperform more general purpose problem solvers, including canonical evolutionary algorithms. Recent work has introduced a novel approach to evolving tailored BBSAs through a genetic programming hyper-heuristic. However, that first generation of hyper-heuristics suffered from overspecialization. This poster paper presents a second generation hyper-heuristic employing a multi-sample training approach to alleviate the overspecialization problem. A variety of experiments demonstrated the significant increase in the robustness of the generated algorithms due to the multi-sample approach, clearly showing its ability to outperform established BBSAs. The trade-off between a priori computational time and the generated algorithm robustness is investigated, demonstrating the performance gain possible given additional run-time.