Weak mixing and eigenvalues for Arnoux-Rauzy sequences
暂无分享,去创建一个
[1] Sébastien Ferenczi,et al. Imbalances in Arnoux-Rauzy sequences , 2000 .
[2] A. Messaoudi,et al. Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci , 2001 .
[3] G. A. Hedlund,et al. Symbolic Dynamics II. Sturmian Trajectories , 1940 .
[4] Ishai Oren. Admissible functions with multiple discontinuities , 1982 .
[5] Ethan M. Coven,et al. Sequences with minimal block growth II , 1973, Mathematical systems theory.
[6] A. Maass,et al. Necessary and Sufficient Conditions to be an Eigenvalue for Linearly Recurrent Dynamical Cantor Systems , 2005, 0801.4619.
[7] Gérard Rauzy,et al. Représentation géométrique de suites de complexité $2n+1$ , 1991 .
[8] Ethan M. Coven,et al. Sequences with minimal block growth , 2005, Mathematical systems theory.
[9] S. Ferenczi. Systems of finite rank , 1997 .
[10] P. Arnoux. Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore , 1988 .
[11] María Isabel Cortez,et al. Continuous and Measurable Eigenfunctions of Linearly Recurrent Dynamical Cantor Systems , 2003, 0801.4616.
[12] P. Arnoux,et al. Pisot substitutions and Rauzy fractals , 2001 .
[13] M. Boshernitzan,et al. A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .
[14] G. Rauzy. Nombres algébriques et substitutions , 1982 .
[15] Sébastien Ferenczi,et al. Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly , 2005 .