Weak mixing and eigenvalues for Arnoux-Rauzy sequences

Institut de Mathematiques de Luminy CNRS-UMR 6206, Case 907, 163 av. de Luminy, 13288 Marseille Cedex 9

[1]  Sébastien Ferenczi,et al.  Imbalances in Arnoux-Rauzy sequences , 2000 .

[2]  A. Messaoudi,et al.  Propriétés combinatoires, ergodiques et arithmétiques de la substitution de Tribonacci , 2001 .

[3]  G. A. Hedlund,et al.  Symbolic Dynamics II. Sturmian Trajectories , 1940 .

[4]  Ishai Oren Admissible functions with multiple discontinuities , 1982 .

[5]  Ethan M. Coven,et al.  Sequences with minimal block growth II , 1973, Mathematical systems theory.

[6]  A. Maass,et al.  Necessary and Sufficient Conditions to be an Eigenvalue for Linearly Recurrent Dynamical Cantor Systems , 2005, 0801.4619.

[7]  Gérard Rauzy,et al.  Représentation géométrique de suites de complexité $2n+1$ , 1991 .

[8]  Ethan M. Coven,et al.  Sequences with minimal block growth , 2005, Mathematical systems theory.

[9]  S. Ferenczi Systems of finite rank , 1997 .

[10]  P. Arnoux Un exemple de semi-conjugaison entre un échange d'intervalles et une translation sur le tore , 1988 .

[11]  María Isabel Cortez,et al.  Continuous and Measurable Eigenfunctions of Linearly Recurrent Dynamical Cantor Systems , 2003, 0801.4616.

[12]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[13]  M. Boshernitzan,et al.  A unique ergodicity of minimal symbolic flows with linear block growth , 1984 .

[14]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[15]  Sébastien Ferenczi,et al.  Interactions between dynamics, arithmetics and combinatorics: the good, the bad, and the ugly , 2005 .