A Gated FM-UWB System With Data-Driven Front-End Power Control

This paper presents a frequency modulated ultra-wideband (FM-UWB) transceiver system with RF submodules gated by a data-driven control signal. With the control signal, intermittent operation of key building blocks such as a VCO in the transmitter and a wideband FM demodulator in the receiver is realized. To enable an effective dynamic power control, the transmitter generates higher subcarrier frequency and modulation index than conventional FM-UWB transmitters by utilizing an 8-modulo fractional-N PLL in which a triangular waveform is generated by a relaxation VCO. In the receiver, an envelope detector monitors the presence of incoming signal and enables the data-edge-triggered power control for a wideband FM demodulator and other blocks. A prototype 3.5-4.1 GHz FM-UWB transceiver for on-chip wireline testing is implemented in 0.18-μm CMOS. Experimental results show that the proposed gated FM-UWB system successfully demodulates the FSK information, achieving nearly 53% power saving with the data-driven power control enabled.

[1]  Geert Van der Plas,et al.  Ultra-wide-band transmitter for low-power wireless body area networks: design and evaluation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[2]  Dominique Morche,et al.  Super-Regenerative Architecture for UWB Pulse Detection: From Theory to RF Front-End Design , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  John R. Long,et al.  Low-Complexity Ultra Wideband Communications , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[4]  Alyssa Apsel,et al.  A high-speed, on-chip implementation of Teager Kaiser operator for in-band interference rejection , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[5]  Joy Laskar,et al.  A highly-linear radio-frequency envelope detector for multi-standard operation , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[6]  John R. Long,et al.  Low-Complexity Ultra-Wide-Band Communications , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[7]  Maria-Gabriella Di Benedetto,et al.  UWB ranging accuracy in high- and low-data-rate applications , 2006, IEEE Transactions on Microwave Theory and Techniques.

[8]  Byunghoo Jung,et al.  A fully integrated 802.15.4a IR-UWB Transceiver in 0.13µm CMOS with digital RRC synthesis , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[9]  Jiren Yuan,et al.  A Low Complexity DDS IC for FM-UWB Applications , 2007, 2007 16th IST Mobile and Wireless Communications Summit.

[10]  Hannu Tenhunen,et al.  A Low-Power and Flexible Energy Detection IR-UWB Receiver for RFID and Wireless Sensor Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[11]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2004 .

[12]  John R. Long,et al.  A 2.2 mW regenerative FM-UWB receiver in 65 nm CMOS , 2010, 2010 IEEE Radio Frequency Integrated Circuits Symposium.

[13]  Marco Crepaldi,et al.  An Ultra-Low-Power interference-robust IR-UWB transceiver chipset using self-synchronizing OOK modulation , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[14]  Woogeun Rhee A low power, wide linear-range CMOS voltage-controlled oscillator , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[15]  Anantha Chandrakasan,et al.  A 2.5nJ/b 0.65V 3-to-5GHz Subbanded UWB Receiver in 90nm CMOS , 2007, 2007 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[16]  Tian Tong,et al.  0.18 μm CMOS RF front-end chipset for FM-UWB based P-PAN receivers , 2007, Norchip 2007.

[17]  Woogeun Rhee Design of low-jitter 1-GHz phase-locked loops for digital clock generation , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[18]  Edgar Sánchez-Sinencio,et al.  An RC time constant auto-tuning structure for high linearity continuous-time /spl Sigma//spl Delta/ modulators and active filters , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[19]  Zhihua Wang,et al.  A Fractional-N PLL for Digital Clock Generation With an FIR-Embedded Frequency Divider , 2007, 2007 IEEE International Symposium on Circuits and Systems.

[20]  Moe Z. Win,et al.  Non-Coherent UWB Communication in the Presence of Multiple Narrowband Interferers , 2010, IEEE Transactions on Wireless Communications.

[21]  Apostolos Georgiadis,et al.  A linear, low-power, wideband CMOS VCO for FM-UWB applications , 2008 .

[22]  R. Gharpurey,et al.  An Agile, Ultra-Wideband Pulse Radio Transceiver With Discrete-Time Wideband-IF , 2009, IEEE Journal of Solid-State Circuits.

[23]  Bharat Gupta,et al.  FM-UWB for Communications and Radar in Medical Applications , 2009, Wirel. Pers. Commun..

[24]  N. Yoshimoto,et al.  A 10.3 Gb/s Burst-Mode CDR Using a ΔΣ DAC , 2008, IEEE Journal of Solid-State Circuits.

[25]  Marco Detratti,et al.  A 4.6mW 6.25–8.25 GHz RF transmitter IC for FM-UWB applications , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[26]  Zhihua Wang,et al.  A 1GHz Fractional-N PLL Clock Generator with Low-OSR ΔΣ Modulation and FIR-Embedded Noise Filtering , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[27]  J.R. Long,et al.  A Wideband FM Demodulator for a Low-Complexity FM-UWB Receiver , 2006, 2006 European Conference on Wireless Technology.

[28]  Xin Liu,et al.  A 0.92/5.3nJ/b UWB impulse radio SoC for communication and localization , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[29]  Bo Xia An RC time constant autotuning structure for high linearity continuours-time modulators and active filters , 2004 .

[30]  Alyssa B. Apsel,et al.  A Low Power Impulse Radio Design for Body-Area-Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[31]  Woogeun Rhee,et al.  A low data rate FM-UWB transmitter with-based sub-carrier modulation and quasi-continuous frequency-locked loop , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[32]  John R. Long,et al.  A Fully-Integrated, Short-Range, Low Data Rate FM-UWB Transmitter in 90 nm CMOS , 2011, IEEE Journal of Solid-State Circuits.

[33]  K. Sakamura,et al.  Intermittent Operation Control Scheme for Reducing Power Consumption of UWB-IR Receiver , 2009, IEEE Journal of Solid-State Circuits.

[34]  A.P. Chandrakasan,et al.  A 2.5 nJ/bit 0.65 V Pulsed UWB Receiver in 90 nm CMOS , 2007, IEEE Journal of Solid-State Circuits.

[35]  Moe Z. Win,et al.  Impulse radio: how it works , 1998, IEEE Communications Letters.

[36]  T. Larsen,et al.  A 0.18 mum CMOS Low Power Ring VCO with 1 GHZ Tuning Range for 3-5 GHZ FM-UWB Applications , 2006, 2006 10th IEEE Singapore International Conference on Communication Systems.

[37]  Andrea Bevilacqua,et al.  An Energy-Detector for Noncoherent Impulse-Radio UWB Receivers , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  Nitz Saputra,et al.  A 900μW, 3–5GHz integrated FM-UWB transmitter in 90nm CMOS , 2010, 2010 Proceedings of ESSCIRC.

[39]  Yuanjin Zheng,et al.  A CMOS Ultra Low-Power and Highly Efficient UWB-IR Transmitter for WPAN Applications , 2009, IEEE Trans. Circuits Syst. II Express Briefs.

[40]  Georgios B. Giannakis,et al.  Ultra-wideband communications: an idea whose time has come , 2003, 2003 4th IEEE Workshop on Signal Processing Advances in Wireless Communications - SPAWC 2003 (IEEE Cat. No.03EX689).

[41]  John R. Long,et al.  Principles and Limitations of Ultra-Wideband FM Communications Systems , 2005, EURASIP J. Adv. Signal Process..

[42]  M. Detratti,et al.  A 7.2 – 7.7 GHz FM-UWB transceiver prototype , 2009, 2009 IEEE International Conference on Ultra-Wideband.

[43]  J. Long,et al.  A Short-Range Low Data-Rate Regenerative FM-UWB Receiver , 2011, IEEE Transactions on Microwave Theory and Techniques.

[44]  John R. Long,et al.  A Short Range, Low Data Rate, 7.2 GHz-7.7 GHz FM-UWB Receiver Front-End , 2009, IEEE Journal of Solid-State Circuits.