Low Mach asymptotic-preserving scheme for the Euler–Korteweg model

We present an all speed scheme for the Euler-Korteweg model. We study a semi-implicit time-discretisation which treats the terms, which are stiff for low Mach numbers, implicitly and thereby avoids a dependence of the timestep restriction on the Mach number. Based on this we present a fully discrete finite difference scheme. In particular, the scheme is asymptotic preserving, i.e., it converges to a stable discretisation of the incompressible limit of the Euler-Korteweg model when the Mach number tends to zero.

[1]  A. Majda,et al.  Compressible and incompressible fluids , 1982 .

[2]  J. Rubinstein,et al.  Minimizers and gradient flows for singularly perturbed bi-stable potentials with a Dirichlet condition , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[3]  T. Hou,et al.  Why nonconservative schemes converge to wrong solutions: error analysis , 1994 .

[4]  Shi Jin Runge-Kutta Methods for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1995 .

[5]  C. D. Levermore,et al.  Numerical Schemes for Hyperbolic Conservation Laws with Stiff Relaxation Terms , 1996 .

[6]  Jian‐Guo Liu,et al.  Vorticity Boundary Condition and Related Issues for Finite Difference Schemes , 1996 .

[7]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[8]  Harald Garcke,et al.  Finite Element Approximation of the Cahn-Hilliard Equation with Degenerate Mobility , 1999, SIAM J. Numer. Anal..

[9]  P. Wesseling,et al.  A conservative pressure-correction method for flow at all speeds , 2003 .

[10]  B. Vollmayr-Lee,et al.  Fast and accurate coarsening simulation with an unconditionally stable time step. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Munz,et al.  Multiple pressure variables methods for fluid flow at all Mach numbers , 2005 .

[12]  Bruno Després,et al.  Asymptotic preserving and positive schemes for radiation hydrodynamics , 2006, J. Comput. Phys..

[13]  E. Feireisl,et al.  The Low Mach Number Limit for the Full Navier–Stokes–Fourier System , 2007 .

[14]  S. Descombes,et al.  On the well-posedness for the Euler-Korteweg model in several space dimensions , 2007 .

[15]  Michael Dumbser,et al.  Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws , 2008, J. Comput. Phys..

[16]  P. Raviart,et al.  GODUNOV-TYPE SCHEMES FOR HYPERBOLIC SYSTEMS WITH PARAMETER-DEPENDENT SOURCE: THE CASE OF EULER SYSTEM WITH FRICTION , 2010 .

[17]  D. Kröner,et al.  Interface conditions for limits of the Navier–Stokes–Korteweg model , 2011 .

[18]  P. Degond,et al.  All speed scheme for the low Mach number limit of the isentropic Euler equations , 2009, 0908.1929.

[19]  Jian‐Guo Liu,et al.  An All-Speed Asymptotic-Preserving Method for the Isentropic Euler and Navier-Stokes Equations , 2012 .

[20]  M. Braack,et al.  Stable discretization of a diffuse interface model for liquid-vapor flows with surface tension , 2013 .

[21]  Philippe G. LeFloch,et al.  Late-time/stiff-relaxation asymptotic-preserving approximations of hyperbolic equations , 2010, Math. Comput..

[22]  Charalambos Makridakis,et al.  Energy consistent discontinuous Galerkin methods for the Navier-Stokes-Korteweg system , 2012, Math. Comput..

[23]  C. Makridakis,et al.  Energy Consistent Dg Methods for the Navier–stokes–korteweg System , 2022 .