Uncertainty‐based multiobjective optimization of groundwater remediation design

[1] Management of groundwater contamination often involves conflicting objectives and substantial uncertainty. The primary objective of this paper is to present a new approach, called the probabilistic multiobjective genetic algorithm (PMOGA), which incorporates uncertainty with multiobjective Pareto optimization. This type of approach is needed for water resources problems with multiple uncertain objectives; previous uncertainty-based optimization approaches consider uncertainty only in the constraints (typically constraining reliability with respect to environmental standards) or in a single objective. The optimization algorithm uses a probabilistic ranking and crowding scheme that improves decision making within the genetic algorithm by identifying a set of solutions that are Pareto optimal despite the uncertainty in the objective values. The algorithm is applied to two groundwater remediation test cases with uncertain objectives: a hypothetical case study and a field-scale pump-and-treat design problem at the Umatilla Chemical Depot situated at Hermiston, Oregon. For these case studies the primary source of uncertainty stems from uncertain aquifer hydraulic conductivity values, which affect both the remediation cost and efficiency. Results are analyzed, and the advantages of the PMOGA are discussed relative to an averaging-based multiobjective approach, a stochastic single-objective approach (similar to chance constrained optimization), and a deterministic multiobjective approach. The results demonstrate that using such an uncertainty-based multiobjective optimization scheme can give valuable information about remediation options, giving results that are not only cost effective but that also have lower uncertainty.

[1]  T. Culver,et al.  Optimizing Groundwater Remediation Design under Uncertainty , 2000 .

[2]  S. Gorelick,et al.  Reliable aquifer remediation in the presence of spatially variable hydraulic conductivity: From data to design , 1989 .

[3]  Erik D. Goodman,et al.  Investigating Parallel Genetic Algorithms on Job Shop Scheduling Problems , 1997, Evolutionary Programming.

[4]  Evan J. Hughes,et al.  Evolutionary Multi-objective Ranking with Uncertainty and Noise , 2001, EMO.

[5]  Martin J. Oates,et al.  The Pareto Envelope-Based Selection Algorithm for Multi-objective Optimisation , 2000, PPSN.

[6]  J. Eheart,et al.  Aquifer remediation design under uncertainty using a new chance constrained programming technique , 1993 .

[7]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[8]  N. Chan Robustness of the multiple realization method for stochastic hydraulic aquifer management , 1993 .

[9]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[10]  C. Azcarate Multiobjective Evolutionary Algorithms. Pareto Rankings , 2003 .

[11]  Bernhard Sendhoff,et al.  A framework for evolutionary optimization with approximate fitness functions , 2002, IEEE Trans. Evol. Comput..

[12]  A. Charnes,et al.  Chance-Constrained Programming , 1959 .

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[15]  G. Pinder,et al.  Groundwater management using numerical simulation and the outer approximation method for global optimization , 1993 .

[16]  Barbara S. Minsker,et al.  Quantifying the effects of uncertainty on optimal groundwater bioremediation policies , 1998 .

[17]  Dragan Savic,et al.  WATER NETWORK REHABILITATION WITH STRUCTURED MESSY GENETIC ALGORITHM , 1997 .

[18]  Gary B. Lamont,et al.  Multiobjective optimization with messy genetic algorithms , 2000, SAC '00.

[19]  Richard C. Peralta,et al.  Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm , 1999 .

[20]  John J. Grefenstette,et al.  Genetic algorithms in noisy environments , 1988, Machine Learning.

[21]  Brad L. Miller,et al.  Noise, sampling, and efficient genetic algorthms , 1997 .

[22]  Abhishek Singh,et al.  Modeling and Characterization of Uncertainty for Optimization of Groundwater Remediation at the Umatilla Chemical Depot , 2003 .

[23]  Nathan Chan,et al.  Partial Infeasibility Method for Chance‐Constrained Aquifer Management , 1994 .

[24]  A. J. Booker,et al.  A rigorous framework for optimization of expensive functions by surrogates , 1998 .

[25]  R. Wardlaw,et al.  EVALUATION OF GENETIC ALGORITHMS FOR OPTIMAL RESERVOIR SYSTEM OPERATION , 1999 .

[26]  J. Dennis,et al.  A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems , 1997 .

[27]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[28]  Kalyanmoy Deb,et al.  A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimisation: NSGA-II , 2000, PPSN.

[29]  David E. Goldberg,et al.  Risk‐based in situ bioremediation design using a noisy genetic algorithm , 2000 .

[30]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[31]  Jürgen Teich,et al.  Pareto-Front Exploration with Uncertain Objectives , 2001, EMO.

[32]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[33]  David E. Dougherty,et al.  Design Optimization for Multiple Management Period Groundwater Remediation , 1996 .

[34]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[35]  David E. Goldberg,et al.  Optimal sampling in a noisy genetic algorithm for risk-based remediation design , 2001 .

[36]  Jeffrey Horn,et al.  Multi-objective optimal design of groundwater remediation systems: application of the niched Pareto genetic algorithm (NPGA) , 2002 .

[37]  Mario F. Triola,et al.  Essentials of Statistics , 2001 .

[38]  R. Peralta Optimal Pumping Strategies for Umatilla Chemical Depot RDX and TNT Plumes , 2002 .

[39]  Christine A. Shoemaker,et al.  Dynamic Optimal Ground-Water Reclamation with Treatment Capital Costs , 1998 .

[40]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[41]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[42]  J. Guan,et al.  Optimal design of groundwater remediation systems using fuzzy set theory , 2004 .

[43]  Liang-Cheng Chang,et al.  Dynamic Optimal Groundwater Management with Inclusion of Fixed Costs , 2002 .

[44]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[45]  R. Ababou,et al.  Implementation of the three‐dimensional turning bands random field generator , 1989 .

[46]  J. Guan,et al.  Optimal remediation with well locations and pumping rates selected as continuous decision variables , 1999 .

[47]  Eduardo Aguado,et al.  Optimal Pumping for Aquifer Dewatering , 1974 .

[48]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[49]  David E. Goldberg,et al.  Combining Reliability and Pareto Optimality—An Approach Using Stochastic Multi-Objective Genetic Algorithms , 2003 .

[50]  M. D. McKay,et al.  A comparison of three methods for selecting values of input variables in the analysis of output from a computer code , 2000 .

[51]  S. Gorelick,et al.  Optimal groundwater quality management under parameter uncertainty , 1987 .

[52]  Dimitri P. Solomatine,et al.  Groundwater Remediation Strategy Using Global Optimization Algorithms , 2002 .

[53]  Amy B. Chan Hilton,et al.  Groundwater Remediation Design under Uncertainty Using Genetic Algorithms , 2005 .

[54]  D. Goldberg,et al.  A multiobjective approach to cost effective long-term groundwater monitoring using an elitist nondominated sorted genetic algorithm with historical data , 2001 .

[55]  Keith Beven,et al.  Stochastic capture zone delineation within the generalized likelihood uncertainty estimation methodology: Conditioning on head observations , 2001 .

[56]  Erick Cantú-Paz,et al.  Efficient and Accurate Parallel Genetic Algorithms , 2000, Genetic Algorithms and Evolutionary Computation.

[57]  Fermín Mallor Giménez,et al.  Multiobjective evolutionary algorithms: Pareto rankings , 2003 .

[58]  Marco Laumanns,et al.  On the convergence and diversity-preservation properties of multi-objective evolutionary algorithms , 2001 .

[59]  Barbara S. Minsker,et al.  Multiscale Strategies for Solving Water Resources Management Problems with Genetic Algorithms , 2003 .

[60]  C. Tiedeman,et al.  Analysis of uncertainty in optimal groundwater contaminant capture design , 1993 .

[61]  David E. Goldberg,et al.  Simplifying multiobjective optimization: An automated design methodology for the nondominated sorted genetic algorithm‐II , 2003 .

[62]  Q. J. Wang The Genetic Algorithm and Its Application to Calibrating Conceptual Rainfall-Runoff Models , 1991 .

[63]  Patrick M. Reed,et al.  Striking the Balance: Long-Term Groundwater Monitoring Design for Conflicting Objectives , 2004 .

[64]  Chunmiao Zheng,et al.  A Field Demonstration of the Simulation Optimization Approach for Remediation System Design , 2002, Ground water.