Stability of Superposition of Two Viscous Shock Waves for the Boltzmann Equation

In this paper we study the time-asymptotic stability of a superposition of two viscous shock waves for one-dimensional Boltzmann equation in Eulerian coordinate under the general initial perturbation without the zero total macroscopic mass condition. Roughly speaking, the general perturbation without the zero mass condition will generate not only the shifts on the two viscous shock waves, but also the linear diffusion wave in the linearly degenerate field. Furthermore, the coupled diffusion waves for the macroscopic part are also crucial in the stability analysis. By using the delicate weighted characteristic energy estimates based on the underlying wave structure, we succeed in proving the time-asymptotic stability of a superposition of two viscous shock waves for Boltzmann equation in Eulerian coordinate without the zero initial mass condition.

[1]  J. Smoller Shock Waves and Reaction-Diffusion Equations , 1983 .

[2]  P. Lax Hyperbolic systems of conservation laws II , 1957 .

[3]  Shi-Hsien Yu,et al.  Hydrodynamic limits with shock waves of the Boltzmann equation , 2005 .

[4]  Kiyoshi Asano,et al.  The Euler limit and initial layer of the nonlinear Boltzmann equation , 1983 .

[5]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[6]  Feimin Huang,et al.  Hydrodynamic Limit of the Boltzmann Equation with Contact Discontinuities , 2009, 0904.1836.

[7]  Kevin Zumbrun Stability of Large-Amplitude Shock Waves of Compressible Navier–Stokes Equations , 2005 .

[8]  Jonathan Goodman,et al.  Nonlinear asymptotic stability of viscous shock profiles for conservation laws , 1986 .

[9]  Huijiang Zhao,et al.  Nonlinear Stability of Rarefaction Waves for the Boltzmann Equation , 2006 .

[10]  Zhouping Xin,et al.  Convergence to rarefaction waves for the nonlinear Boltzmann equation and compressible Navier–Stokes equations , 2010 .

[11]  Shuichi Kawashima,et al.  Asymptotic stability of traveling wave solutions of systems for one-dimensional gas motion , 1985 .

[12]  T. Nishida Fluid dynamical limit of the nonlinear Boltzmann equation to the level of the compressible Euler equation , 1978 .

[13]  Zhouping Xin,et al.  Stability of Contact Discontinuities for the 1-D Compressible Navier-Stokes Equations , 2006 .

[14]  Zhouping Xin,et al.  Pointwise decay to contact discontinuities for systems of viscous conservation laws , 1997 .

[15]  Tai-Ping Liu,et al.  Invariant Manifolds for Steady Boltzmann Flows and Applications , 2013 .

[16]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[17]  Mirosław Lachowicz,et al.  On the initial layer and the existence theorem for the nonlinear Boltzmann equation , 1986 .

[18]  Yi Wang,et al.  Fluid dynamic limit to the Riemann Solutions of Euler equations: I. Superposition of rarefaction waves and contact discontinuity , 2010, 1011.1990.

[19]  Stability of a superposition of shock waves with contact discontinuities for systems of viscous conservation laws , 2009 .

[20]  Russel E. Caflisch,et al.  Shock profile solutions of the Boltzmann equation , 1982 .

[21]  Kenji Nishihara,et al.  Asymptotics toward the rarefaction waves of the solutions of a one-dimensional model system for compressible viscous gas , 1986 .

[22]  Jing Li,et al.  Asymptotic Stability of Combination of Viscous Contact Wave with Rarefaction Waves for One-Dimensional Compressible Navier–Stokes System , 2010 .

[23]  R. Caflisch The fluid dynamic limit of the nonlinear boltzmann equation , 1980 .

[24]  Yong Wang,et al.  The Limit of the Boltzmann Equation to the Euler Equations for Riemann Problems , 2011, SIAM J. Math. Anal..

[25]  Ludwig Boltzmann,et al.  Lectures on Gas Theory , 1964 .

[26]  Zhouping Xin,et al.  Nonlinear stability of viscous shock waves , 1993 .

[27]  François Golse,et al.  Chapter 3 - The Boltzmann Equation and Its Hydrodynamic Limits , 2005 .

[28]  Yi Wang,et al.  Vanishing Viscosity Limit of the Compressible Navier–Stokes Equations for Solutions to a Riemann Problem , 2012 .

[29]  Tong Yang,et al.  GLOBAL SOLUTIONS TO THE BOLTZMANN EQUATION WITH EXTERNAL FORCES , 2005 .

[30]  Tai-Ping Liu,et al.  Nonlinear Stability of Shock Waves for Viscous Conservation Laws , 1985 .

[31]  P. Lax Hyperbolic systems of conservation laws , 2006 .

[32]  Feimin Huang,et al.  Stability of a Composite Wave of Two Viscous Shock Waves for the Full Compressible Navier-Stokes Equation , 2009 .

[33]  Feimin Huang,et al.  Stability of contact discontinuity for the Boltzmann equation , 2006 .

[34]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases , 1939 .

[35]  Harold Grad,et al.  Asymptotic Theory of the Boltzmann Equation, II , 1963 .

[36]  Shih-Hsien Yu,et al.  Nonlinear wave propagations over a Boltzmann shock profile , 2010 .