Post-processing of Docking Results: Tools and Strategies

Abstract Obtaining ligand-receptor complexes is just the tip of the iceberg of the whole docking process. Various ligand orientations in the binding site of a protein are of limited application, if the energy of such complexes is not evaluated. Interactions occurring within such biological assemblies are most often assessed with the use of various scoring functions. There also exists a number of docking post-processing strategies, such as capturing of ligand-protein contacts in the form of interaction fingerprints (IFPs), followed by its statistical analysis. On the opposite pole of such automated strategies is a visual inspection of docking poses, which can be applied for small compound groups, but for obvious reasons cannot be used on a large scale. The chapter summarizes the strategies for evaluating ligand-protein complexes—from scoring functions, via IFPs analyzed using machine learning methods, to visual inspection. Attention is also given to hybrid approaches and comprehensive post-processing protocols that combine methods from various groups.

[1]  S. Iwata,et al.  Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine , 2019, Nature Structural & Molecular Biology.

[2]  Hans-Joachim Böhm,et al.  The development of a simple empirical scoring function to estimate the binding constant for a protein-ligand complex of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[3]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[4]  Gennady M Verkhivker,et al.  Molecular recognition of the inhibitor AG-1343 by HIV-1 protease: conformationally flexible docking by evolutionary programming. , 1995, Chemistry & biology.

[5]  Jonathan D Hirst,et al.  Machine learning in virtual screening. , 2009, Combinatorial chemistry & high throughput screening.

[6]  Tom L. Blundell,et al.  CREDO: a structural interactomics database for drug discovery , 2013, Database J. Biol. Databases Curation.

[7]  G. V. Paolini,et al.  Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes , 1997, J. Comput. Aided Mol. Des..

[8]  Eric J. Martin,et al.  Surrogate AutoShim: Predocking into a Universal Ensemble Kinase Receptor for Three Dimensional Activity Prediction, Very Quickly, without a Crystal Structure , 2008, J. Chem. Inf. Model..

[9]  Tom L. Blundell,et al.  Comprehensive, atomic-level characterization of structurally characterized protein-protein interactions: the PICCOLO database , 2011, BMC Bioinformatics.

[10]  S. Iwata,et al.  Structures of the 5-HT2A receptor in complex with the antipsychotics risperidone and zotepine , 2019, Nature Structural & Molecular Biology.

[11]  Sean Ekins The Next Era: Deep Learning in Pharmaceutical Research , 2016, Pharmaceutical Research.

[12]  Obdulia Rabal,et al.  APIF: A New Interaction Fingerprint Based on Atom Pairs and Its Application to Virtual Screening , 2009, J. Chem. Inf. Model..

[13]  C. Venkatachalam,et al.  LigScore: a novel scoring function for predicting binding affinities. , 2005, Journal of molecular graphics & modelling.

[14]  M. Murcko,et al.  Consensus scoring: A method for obtaining improved hit rates from docking databases of three-dimensional structures into proteins. , 1999, Journal of medicinal chemistry.

[15]  Chris de Graaf,et al.  KLIFS: a structural kinase-ligand interaction database , 2015, Nucleic Acids Res..

[16]  John B. O. Mitchell Machine learning methods in chemoinformatics , 2014, Wiley interdisciplinary reviews. Computational molecular science.

[17]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[18]  Dariusz Plewczynski,et al.  VoteDock: Consensus docking method for prediction of protein–ligand interactions , 2011, J. Comput. Chem..

[19]  P. Hajduk,et al.  Evaluation of PMF scoring in docking weak ligands to the FK506 binding protein. , 1999, Journal of medicinal chemistry.

[20]  James M. Anderson,et al.  Experimental versus predicted affinities for ligand binding to estrogen receptor: iterative selection and rescoring of docked poses systematically improves the correlation , 2013, Journal of Computer-Aided Molecular Design.

[21]  Eric J. Martin,et al.  AutoShim: Empirically Corrected Scoring Functions for Quantitative Docking with a Crystal Structure and IC50 Training Data , 2008, J. Chem. Inf. Model..

[22]  Huikun Zhang,et al.  Machine Learning Consensus Scoring Improves Performance Across Targets in Structure-Based Virtual Screening , 2017, J. Chem. Inf. Model..

[23]  Jürgen Bajorath,et al.  Three‐Dimensional Protein–Ligand Interaction Scaling of Two‐Dimensional Fingerprints , 2009, Chemical biology & drug design.

[24]  Claudio N. Cavasotto,et al.  Exponential consensus ranking improves the outcome in docking and receptor ensemble docking , 2019, Scientific Reports.

[25]  I. Kuntz,et al.  Inclusion of Solvation in Ligand Binding Free Energy Calculations Using the Generalized-Born Model , 1999 .

[26]  Tom L. Blundell,et al.  BIPA: a database for protein-nucleic acid interaction in 3D structures , 2009, Bioinform..

[27]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[28]  Mark McGann,et al.  FRED and HYBRID docking performance on standardized datasets , 2012, Journal of Computer-Aided Molecular Design.

[29]  Hans-Joachim Böhm,et al.  The computer program LUDI: A new method for the de novo design of enzyme inhibitors , 1992, J. Comput. Aided Mol. Des..

[30]  Kwong-Sak Leung,et al.  Improving AutoDock Vina Using Random Forest: The Growing Accuracy of Binding Affinity Prediction by the Effective Exploitation of Larger Data Sets , 2015, Molecular informatics.

[31]  Ajay N. Jain Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. , 2003, Journal of medicinal chemistry.

[32]  Robert P. Sheridan,et al.  FLOG: A system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure , 1994, J. Comput. Aided Mol. Des..

[33]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[34]  Gianni De Fabritiis,et al.  KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks , 2018, J. Chem. Inf. Model..

[35]  Zhihai Liu,et al.  Comparative Assessment of Scoring Functions on a Diverse Test Set , 2009, J. Chem. Inf. Model..

[36]  I. Kuntz,et al.  Automated docking with grid‐based energy evaluation , 1992 .

[37]  Jie Liu,et al.  Classification of Current Scoring Functions , 2015, J. Chem. Inf. Model..

[38]  Thomas A. Halgren,et al.  Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94 , 1996, J. Comput. Chem..

[39]  Ruben Abagyan,et al.  ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation , 1994, J. Comput. Chem..

[40]  Andrzej J. Bojarski,et al.  Multi-Step Protocol for Automatic Evaluation of Docking Results Based on Machine Learning Methods - A Case Study of Serotonin Receptors 5-HT6 and 5-HT7 , 2015, J. Chem. Inf. Model..

[41]  H. Kitano,et al.  Combining Machine Learning Systems and Multiple Docking Simulation Packages to Improve Docking Prediction Reliability for Network Pharmacology , 2013, PloS one.

[42]  Yuguang Mu,et al.  OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction , 2019, ACS omega.

[43]  D R Flower,et al.  SERF: a program for accessible surface area calculations. , 1997, Journal of molecular graphics & modelling.

[44]  Brian K. Shoichet,et al.  Molecular docking using shape descriptors , 1992 .

[45]  Piotr Zielenkiewicz,et al.  Open Drug Discovery Toolkit (ODDT): a new open-source player in the drug discovery field , 2015, Journal of Cheminformatics.

[46]  Luhua Lai,et al.  SCORE: A New Empirical Method for Estimating the Binding Affinity of a Protein-Ligand Complex , 1998 .

[47]  G. Klebe,et al.  Knowledge-based scoring function to predict protein-ligand interactions. , 2000, Journal of molecular biology.

[48]  M. Gilson,et al.  A new class of models for computing receptor-ligand binding affinities. , 1997, Chemistry & biology.

[49]  Natalia Artemenko,et al.  Distance Dependent Scoring Function for Describing Protein-Ligand Intermolecular Interactions , 2008, J. Chem. Inf. Model..

[50]  Wei Deng,et al.  Predicting Protein-Ligand Binding Affinities Using Novel Geometrical Descriptors and Machine-Learning Methods , 2004, J. Chem. Inf. Model..

[51]  C. Venkatachalam,et al.  LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. , 2003, Journal of molecular graphics & modelling.

[52]  C. Müller,et al.  Crystal structure of the human ecto-5'-nucleotidase (CD73): insights into the regulation of purinergic signaling. , 2012, Structure.

[53]  Luhua Lai,et al.  Deep Learning for Drug-Induced Liver Injury , 2015, J. Chem. Inf. Model..

[54]  Frank M. Boeckler,et al.  Evaluation and Optimization of Virtual Screening Workflows with DEKOIS 2.0 - A Public Library of Challenging Docking Benchmark Sets , 2013, J. Chem. Inf. Model..

[55]  A. Kukol Consensus virtual screening approaches to predict protein ligands. , 2011, European journal of medicinal chemistry.

[56]  Philip E. Bourne,et al.  A Machine Learning-Based Method To Improve Docking Scoring Functions and Its Application to Drug Repurposing , 2011, J. Chem. Inf. Model..

[57]  Zhiwei Cao,et al.  Proteochemometric Modeling of the Bioactivity Spectra of HIV-1 Protease Inhibitors by Introducing Protein-Ligand Interaction Fingerprint , 2012, PloS one.

[58]  Gilles Marcou,et al.  Optimizing Fragment and Scaffold Docking by Use of Molecular Interaction Fingerprints , 2007, J. Chem. Inf. Model..

[59]  Pedro J. Ballester,et al.  Performance of machine-learning scoring functions in structure-based virtual screening , 2017, Scientific Reports.

[60]  A. N. Jain,et al.  Compass: predicting biological activities from molecular surface properties. Performance comparisons on a steroid benchmark. , 1994, Journal of medicinal chemistry.

[61]  Zhihai Liu,et al.  Forging the Basis for Developing Protein-Ligand Interaction Scoring Functions. , 2017, Accounts of chemical research.

[62]  Didier Rognan,et al.  sc-PDB: a 3D-database of ligandable binding sites—10 years on , 2014, Nucleic Acids Res..

[63]  X Chen,et al.  The binding database: overview and user's guide. , 2001, Biopolymers.

[64]  Z. Deng,et al.  Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. , 2004, Journal of medicinal chemistry.

[65]  Pierre Baldi,et al.  Deep Architectures and Deep Learning in Chemoinformatics: The Prediction of Aqueous Solubility for Drug-Like Molecules , 2013, J. Chem. Inf. Model..

[66]  Alexios Koutsoukas,et al.  Deep-learning: investigating deep neural networks hyper-parameters and comparison of performance to shallow methods for modeling bioactivity data , 2017, Journal of Cheminformatics.

[67]  Teruki Honma,et al.  Combining Machine Learning and Pharmacophore-Based Interaction Fingerprint for in Silico Screening , 2010, J. Chem. Inf. Model..

[68]  Sourav Das,et al.  Binding Affinity Prediction with Property-Encoded Shape Distribution Signatures , 2010, J. Chem. Inf. Model..

[69]  John B. O. Mitchell,et al.  A machine learning approach to predicting protein-ligand binding affinity with applications to molecular docking , 2010, Bioinform..

[70]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[71]  Xiaofeng Liu,et al.  SHAFTS: A Hybrid Approach for 3D Molecular Similarity Calculation. 1. Method and Assessment of Virtual Screening , 2011, J. Chem. Inf. Model..

[72]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[73]  Pedro J. Ballester,et al.  Ultrafast shape recognition for similarity search in molecular databases , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[74]  Gabriela Bitencourt-Ferreira,et al.  Molegro Virtual Docker for Docking. , 2019, Methods in molecular biology.

[75]  Johann Gasteiger,et al.  The Coding of the Three-Dimensional Structure of Molecules by Molecular Transforms and Its Application to Structure-Spectra Correlations and Studies of Biological Activity , 1996, J. Chem. Inf. Comput. Sci..

[76]  Patrick Bultinck,et al.  The Electronegativity Equalization Method II: Applicability of Different Atomic Charge Schemes , 2002 .

[77]  Andreas Mayr,et al.  Deep Learning as an Opportunity in Virtual Screening , 2015 .

[78]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[79]  Terry R. Stouch,et al.  A simple method for the representation, quantification, and comparison of the volumes and shapes of chemical compounds , 1986, J. Chem. Inf. Comput. Sci..

[80]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[81]  W. Graham Richards,et al.  Ultrafast shape recognition to search compound databases for similar molecular shapes , 2007, J. Comput. Chem..

[82]  Matthias Rarey,et al.  Towards an Integrated Description of Hydrogen Bonding and Dehydration: Decreasing False Positives in Virtual Screening with the HYDE Scoring Function , 2008, ChemMedChem.

[83]  Thomas G. Dietterich,et al.  Compass: A shape-based machine learning tool for drug design , 1994, J. Comput. Aided Mol. Des..

[84]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[85]  Zsolt Zsoldos,et al.  LASSO—ligand activity by surface similarity order: a new tool for ligand based virtual screening , 2008, J. Comput. Aided Mol. Des..

[86]  Zhihai Liu,et al.  Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results , 2014, J. Chem. Inf. Model..

[87]  Vladimir Vapnik,et al.  Support-vector networks , 2004, Machine Learning.

[88]  In-Wha Kim,et al.  Deep learning: from chemoinformatics to precision medicine , 2017, Journal of Pharmaceutical Investigation.

[89]  George Papadatos,et al.  Beyond the hype: deep neural networks outperform established methods using a ChEMBL bioactivity benchmark set , 2017, bioRxiv.

[90]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[91]  Robert P. Sheridan,et al.  Deep Neural Nets as a Method for Quantitative Structure-Activity Relationships , 2015, J. Chem. Inf. Model..

[92]  G. S. Gill,et al.  Molecular surface point environments for virtual screening and the elucidation of binding patterns (MOLPRINT) , 2004 .

[93]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[94]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[95]  D S Goodsell,et al.  Automated docking of flexible ligands: Applications of autodock , 1996, Journal of molecular recognition : JMR.

[96]  J. Bajorath,et al.  Utilizing Target–Ligand Interaction Information in Fingerprint Searching for Ligands of Related Targets , 2009, Chemical biology & drug design.

[97]  Dmitri B. Kireev,et al.  Structural Protein–Ligand Interaction Fingerprints (SPLIF) for Structure-Based Virtual Screening: Method and Benchmark Study , 2014, J. Chem. Inf. Model..

[98]  A. N. Jain,et al.  Quantitative binding site model generation: compass applied to multiple chemotypes targeting the 5-HT1A receptor. , 1995, Journal of medicinal chemistry.

[99]  Hualiang Jiang,et al.  Structural Basis for Molecular Recognition at Serotonin Receptors , 2013, Science.

[100]  Marta M. Stepniewska-Dziubinska,et al.  Development and evaluation of a deep learning model for protein–ligand binding affinity prediction , 2017, Bioinform..

[101]  Jens Meiler,et al.  Autocorrelation descriptor improvements for QSAR: 2DA_Sign and 3DA_Sign , 2016, Journal of Computer-Aided Molecular Design.

[102]  Ming-Jing Hwang,et al.  An interaction-motif-based scoring function for protein-ligand docking , 2010, BMC Bioinformatics.

[103]  Shuichi Hirono,et al.  Comparison of Consensus Scoring Strategies for Evaluating Computational Models of Protein-Ligand Complexes , 2006, J. Chem. Inf. Model..

[104]  Tom L. Blundell,et al.  USRCAT: real-time ultrafast shape recognition with pharmacophoric constraints , 2012, Journal of Cheminformatics.

[105]  Bas Vroling,et al.  GPCRdb: an information system for G protein-coupled receptors , 2015, Nucleic Acids Res..

[106]  Ruben Abagyan,et al.  Pocketome: an encyclopedia of small-molecule binding sites in 4D , 2011, Nucleic Acids Res..

[107]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[108]  A. S. Nascimento,et al.  MolShaCS: a free and open source tool for ligand similarity identification based on Gaussian descriptors. , 2013, European journal of medicinal chemistry.

[109]  Ping Liu,et al.  Crystal structure of the human 5-HT1B serotonin receptor bound to an inverse agonist , 2018, Cell Discovery.

[110]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[111]  Aniko Simon,et al.  eHiTS: a new fast, exhaustive flexible ligand docking system. , 2007, Journal of molecular graphics & modelling.

[112]  Eugene I. Shakhnovich,et al.  SMOG : DE NOVO DESIGN METHOD BASED ON SIMPLE, FAST, AND ACCURATE FREE ENERGY ESTIMATES. 2. CASE STUDIES IN MOLECULAR DESIGN , 1997 .