Regular and Chaotic Dynamics of the Lorenz-Stenflo System

We analytically investigate the dynamics of the generalized Lorenz equations obtained by Stenflo for acoustic gravity waves. By using Descartes' Rule of Signs and Routh–Hurwitz Test, we decide on the stability of the fixed points of the Lorenz–Stenflo system, although without explicit solution of the eigenvalue equation. We determine the precise location where pitchfork and Hopf bifurcation of fixed points occur, as a function of the parameters of the system. Parameter-space plots, Lyapunov exponents, and bifurcation diagrams are used to numerically characterize periodic and chaotic attractors.

[1]  Choy Heng Lai,et al.  Bifurcation behavior of the generalized Lorenz equations at large rotation numbers , 1997 .

[2]  S. Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos , 1989 .

[3]  Lennart Stenflo,et al.  Generalized Lorenz equations for acoustic-gravity waves in the atmosphere , 1996 .

[4]  M. Yu Some Chaotic Aspects of the Lorenz-Stenflo Equations , 1999 .

[5]  Cristian Bonatto,et al.  Self-similarities in the frequency-amplitude space of a loss-modulated CO2 laser. , 2005, Physical review letters.

[6]  Robert Tibshirani,et al.  An Introduction to the Bootstrap , 1994 .

[7]  M. Yu,et al.  Periodic and chaotic solutions of the generalized lorenz equations , 1996 .

[8]  Santo Banerjee,et al.  Chaotic Scenario in the Stenflo Equations , 2001 .

[9]  Paulo C. Rech,et al.  A Parameter-Space of a Chua System with a Smooth Nonlinearity , 2009, Int. J. Bifurc. Chaos.

[10]  J. Gallas,et al.  Accumulation horizons and period adding in optically injected semiconductor lasers. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  Paulo C. Rech,et al.  Self-similar structures in a 2D parameter-space of an inductorless Chua's circuit , 2008 .

[12]  J. Gallas,et al.  Structure of the parameter space of the Hénon map. , 1993, Physical review letters.

[13]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[14]  Choy Heng Lai,et al.  THE BIFURCATION CHARACTERISTICS OF THE GENERALIZED LORENZ EQUATIONS , 1996 .