Exchange algorithms that complement the Parks-McClellan algorithm for linear-phase FIR filter design

The authors describe an exchange algorithm for the frequency domain design of linear-phase FIR equiripple filters where the Chebyshev error in each band is specified. The algorithm is a hybrid of the algorithm of Hofstetter, Oppenheim and Siegel and the Parks-McClellan algorithm. The authors also describe a modification of the Parks-McClellan algorithm where either the passband or the stopband ripple size is specified and the other is minimized.

[1]  O. Herrmann Design of nonrecursive digital filters with linear phase , 1970 .

[2]  O. Herrmann,et al.  Design of nonrecursive digital filters with minimum phase , 1970 .

[3]  E. Hofstetter A New Technique for the Design of Non-Recursive Digital Filters , 1970 .

[4]  H. Helms Digital filters with equiripple or minimax responses , 1971 .

[5]  J. McClellan,et al.  Chebyshev Approximation for Nonrecursive Digital Filters with Linear Phase , 1972 .

[6]  Lawrence R. Rabiner,et al.  On the transition width of finite impulse-response digital filters , 1973 .

[7]  L. Rabiner,et al.  A computer program for designing optimum FIR linear phase digital filters , 1973 .

[8]  Keh-Shew Lu,et al.  DIGITAL FILTER DESIGN , 1973 .

[9]  Lawrence R. Rabiner,et al.  Approximate design relationships for low-pass FIR digital filters , 1973 .

[10]  Ronald W. Schafer,et al.  Some considerations in the design of multiband finite-impulse-response digital filters , 1974 .

[11]  L. Rabiner,et al.  FIR digital filter design techniques using weighted Chebyshev approximation , 1975, Proceedings of the IEEE.

[12]  Alan V. Oppenheim,et al.  Selected papers in digital signal processing, II , 1976 .

[13]  B. Leon,et al.  Constrained ripple design of FIR digital filters , 1978 .

[14]  C. K. Yuen,et al.  Theory and Application of Digital Signal Processing , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[15]  Andreas Antoniou,et al.  Accelerated procedure for the design of equiripple nonrecursive digital filters , 1982 .

[16]  F. Bonzanigo Some improvements to the design programs for equiripple FIR filters , 1982, ICASSP.

[17]  U. Heute,et al.  Accelerated design of linear or minimum phase FIR filters with a Chebyshev magnitude response , 1983 .

[18]  Andreas Antoniou,et al.  New improved method for the design of weighted- Chebyshev, nonrecursive, digital filters , 1983 .

[19]  Francis Grenez Design of linear or minimum-phase fir filters by constrained chebyshev approximation , 1983 .

[20]  A. Willson,et al.  On the fast design of high-order FIR digital filters , 1985 .

[21]  Editors , 1986, Brain Research Bulletin.

[22]  D. Shpak,et al.  A generalized Remez method for the design of FIR digital filters , 1990 .

[23]  Kenneth Steiglitz,et al.  METEOR: a constraint-based FIR filter design program , 1992, IEEE Trans. Signal Process..

[24]  Stephen A. Dyer,et al.  Digital signal processing , 2018, 8th International Multitopic Conference, 2004. Proceedings of INMIC 2004..

[25]  Thomas W. Parks,et al.  Error criteria for filter design , 1994, Proceedings of ICASSP '94. IEEE International Conference on Acoustics, Speech and Signal Processing.

[26]  C. Sidney Burrus,et al.  Constrained least square design of FIR filters without specified transition bands , 1996, IEEE Trans. Signal Process..