Intelligent control - the road ahead

This position statement discusses the properties that an intelligent system should exhibit, and points out possible directions for intelligent control, coming from cognitive psychology and neuroscience.

[1]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[2]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[3]  Carlos M. Fonseca,et al.  An overview of nonlinear identification and control with neural networks. , 2005 .

[4]  Frank L. Lewis,et al.  Feedback linearization using neural networks , 1994, Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94).

[5]  Gwo-Ruey Yu,et al.  Gain scheduling for lateral motion of propulsion controlled aircraft using neural networks , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[6]  Peter J. Fleming,et al.  A connectionist approach to PID autotuning , 1991 .

[7]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[8]  Henry Markram,et al.  On the computational power of circuits of spiking neurons , 2004, J. Comput. Syst. Sci..

[9]  António E. Ruano,et al.  Neuro-genetic PID autotuning: time invariant case , 2000 .

[10]  F. Gómez-Bravo,et al.  Application of intelligent control to autonomous search of parking place and parking of vehicles , 2005 .

[11]  José Carlos Príncipe,et al.  Computation in a reduced KII network based on synchronization , 2006, Int. J. Intell. Syst..

[12]  A. J. Morris,et al.  Artificial neural networks in process engineering , 1991 .

[13]  Józef Korbicz,et al.  Combined computational intelligence and analytical methods in fault diagnosis , 2005 .