Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar

These notes are an introduction to basic concepts and tools in group representation theory, both commutative and noncommutative, that are fundamental for the analysis of radar and sonar imaging. Several symmetry groups of physical interest are treated (circle, line, rotation, ¢ ¡ ¤ £ ¦ ¥ , Heisenberg, etc.) together with their associated transforms and representation theories (DFT, Fourier transform, expansions in spherical harmonics, wavelets, etc.). Through the unifying concepts of group representation theory, familiar tools for commutative groups, such as the Fourier transform on the line, extend to transforms for the noncommutative groups which arise in radar-sonar. The insight and results obtained will are related directly to objects of interest in radar-sonar, such as the ambiguity function. The material is presented with many examples and should be easily comprehensible by engineers and physicists, as well as mathematicians.

[1]  J. R. Klauder,et al.  The design of radar signals having both high range resolution and high velocity resolution , 1960 .

[2]  Jeffrey M. Speiser Wide-band ambiguity functions (Corresp.) , 1967, IEEE Trans. Inf. Theory.

[3]  J. Zak The Kq-Representation in the Dynamics of Electrons in Solids , 1972 .

[4]  D. Sattinger,et al.  Calculus on Manifolds , 1986 .

[5]  J. Mayer,et al.  On the Quantum Correction for Thermodynamic Equilibrium , 1947 .

[6]  F. Low Complete sets of wave packets , 1985 .

[7]  Thierry Paul,et al.  Functions analytic on the half‐plane as quantum mechanical states , 1984 .

[8]  W. Rudin Principles of mathematical analysis , 1964 .

[9]  Ingrid Daubechies,et al.  The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.

[10]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[11]  Louis Auslander,et al.  Fiber bundle structures and harmonic analysis of compact heisenberg manifolds , 1972 .

[12]  A. Janssen Gabor representation of generalized functions , 1981 .

[13]  Walter Schempp Neurocomputer Architectures , 1989 .

[14]  de Ng Dick Bruijn,et al.  Uncertainty principles in Fourier analysis , 1967 .

[15]  A. Grossmann,et al.  TRANSFORMS ASSOCIATED TO SQUARE INTEGRABLE GROUP REPRESENTATION. 2. EXAMPLES , 1986 .

[16]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[17]  I. Daubechies Discrete sets of coherent states and their use in signal analysis , 1987 .

[18]  A. Kirillov Elements of the theory of representations , 1976 .

[19]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[20]  Jacob T. Schwartz,et al.  Lie Groups; Lie Algebras , 1968 .

[21]  Richard Kronland-Martinet,et al.  Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..

[22]  A. Weil Sur certains groupes d'opérateurs unitaires , 1964 .

[23]  J. Zak,et al.  Rational von Neumann lattices , 1983 .

[24]  E. Hille,et al.  Analytic Function Theory. Volume II , 1973 .

[25]  J. Zak Dynamics of Electrons in Solids in External Fields , 1968 .

[26]  Willard Miller,et al.  Symmetry and Separation of Variables , 1977 .

[27]  M. Bastiaans,et al.  Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.

[28]  M. Rieffel Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .

[29]  Steven M. Sussman,et al.  Least-square synthesis of radar ambiguity functions , 1962, IRE Trans. Inf. Theory.

[30]  Arthur S. Hathaway,et al.  A COURSE IN MODERN ANALYSIS. , 1903 .

[31]  E. J. Kelly,et al.  The Radar Measurement of Range, Velocity and Acceleration , 1961, IRE Transactions on Military Electronics.

[32]  W. Schempp Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .

[33]  I. Daubechies,et al.  Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .

[34]  Tibor Rado,et al.  Continuous Transformations in Analysis , 1955 .

[35]  Martin J. Bastiaans,et al.  Gabor’s expansion of a signal into a discrete set of Gaussian elementary signals , 1980 .

[36]  Steven A. Gaal,et al.  Linear analysis and representation theory , 1973 .

[37]  D. Swick AN AMBIGUITY FUNCTION INDEPENDENT OF ASSUMPTIONS ABOUT BANDWIDTH AND CARRIER FREQUENCY , 1966 .

[38]  I. M. Glazman,et al.  Theory of linear operators in Hilbert space , 1961 .

[39]  Tosio Kato Perturbation theory for linear operators , 1966 .

[40]  Ephraim Feig,et al.  Tomographic methods in range-Doppler radar , 1986 .

[41]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[42]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[43]  D. Swick A REVIEW OF WIDEBAND AMBIGUITY FUNCTIONS , 1969 .

[44]  M. E. Davison,et al.  Tomographic reconstruction with arbitrary directions , 1981 .

[45]  Thomas Kailath,et al.  Signal processing Part I: signal processing theory , 1990 .

[46]  David F. Walnut,et al.  Weyl-Heisenberg Wavelet Expansions: Existence and Stability in Weighted Spaces , 1989 .

[47]  Ingrid Daubechies,et al.  Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.

[48]  Harold Naparst,et al.  Radar signal choice and processing for a dense target environment , 1990 .

[49]  Nobuhiko Tatsuuma,et al.  Plancherel formula for non-unimodular locally compact groups , 1972 .

[50]  A. Grossmann,et al.  Wavelet Transforms and Edge Detection , 1988 .

[51]  Akihiro Kohari Harmonic analysis on the group of linear transformations of the straight line , 1961 .

[52]  R.N. Bracewell,et al.  Signal analysis , 1978, Proceedings of the IEEE.

[53]  A. Janssen Weighted Wigner distributions vanishing on lattices , 1981 .

[54]  J. Zak,et al.  Amplitudes on von Neumann lattices , 1981 .

[55]  John J. Benedetto,et al.  Gabor Representations and Wavelets. , 1987 .

[56]  A. Grossmann,et al.  Proof of completeness of lattice states in the k q representation , 1975 .

[57]  R. Tolimieri,et al.  Abelian harmonic analysis, theta functions and function algebras on a nilmanifold , 1975 .

[58]  Y. Meyer Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .

[59]  W. Schempp,et al.  Harmonic analysis on the Heisenberg nilpotent Lie group, with applications to signal theory , 1986 .

[60]  T. Claasen,et al.  THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .

[61]  A. Janssen The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .

[62]  V. Bargmann On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .

[63]  W. Miller Symmetry groups and their applications , 1972 .

[64]  Richard Tolimieri,et al.  Computing decimated finite cross-ambiguity functions , 1988, IEEE Trans. Acoust. Speech Signal Process..

[65]  Calvin C. Moore,et al.  On the regular representation of a nonunimodular locally compact group , 1976 .

[66]  Frank Natterer,et al.  On the inversion of the attenuated Radon transform , 1979 .

[67]  R. Tolimieri,et al.  Radar Ambiguity Functions and Group Theory , 1985 .

[68]  A. Grossmann,et al.  DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .

[69]  R. Balian Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .

[70]  D. A. Dunnett Classical Electrodynamics , 2020, Nature.

[71]  H. Reiter Classical Harmonic Analysis and Locally Compact Groups , 1968 .

[72]  N. Vilenkin Special Functions and the Theory of Group Representations , 1968 .

[73]  Willard Miller,et al.  On the special function theory of occupation number space, II , 1965 .

[74]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[75]  Richard Tolimieri,et al.  Characterizing the radar ambiguity functions , 1984, IEEE Trans. Inf. Theory.

[76]  Idriss Khalil,et al.  Sur l'analyse harmonique du groupe affine de la droite , 1974 .

[77]  M. Bernfeld,et al.  CHIRP Doppler radar , 1984, Proceedings of the IEEE.

[78]  Izidor Gertner,et al.  Wide-band ambiguity function and a.x+b group , 1990 .

[79]  Chung-I Tan,et al.  A Passion for Physics: Essays in Honor of Geoffrey Chew , 1986 .

[80]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .

[81]  D. F. Johnston,et al.  Representations of groups , 1964, The Mathematical Gazette.

[82]  Philip M. Woodward,et al.  Probability and Information Theory with Applications to Radar , 1954 .

[83]  N. Wiener The Fourier Integral: and certain of its Applications , 1933, Nature.

[84]  R. J. Gleiser Doppler shift for a radar echo , 1979 .

[85]  Martin J. Bastiaans,et al.  The Expansion of an Optical Signal into a Discrete Set of Gaussian Beams , 1980, DAGM-Symposium.

[86]  A. Erdélyi,et al.  Tables of integral transforms , 1955 .

[87]  A. Grossmann,et al.  DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .

[88]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[89]  J. Zak Lattice operators in crystals for Bravais and reciprocal vectors , 1975 .

[90]  V. Bargmann,et al.  On the Completeness of Coherent States , 1971 .

[91]  A. Papoulis Ambiguity function in Fourier optics , 1974 .

[92]  Calvin H. Wilcox,et al.  The Synthesis Problem for Radar Ambiguity Functions , 1991 .

[93]  I. Daubechies,et al.  PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .

[94]  Christopher Heil,et al.  Wavelets and frames , 1990 .

[95]  Ajem Guido Janssen,et al.  Robust data equalization, fractional tap spacing and the Zak transform. , 1987 .

[96]  Wilhelm Magnus,et al.  Lie Theory and Special Functions , 1969 .

[97]  J. Zak FINITE TRANSLATIONS IN SOLID-STATE PHYSICS. , 1967 .

[98]  G. Weiss,et al.  Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .

[99]  August W. Rihaczek,et al.  Radar resolution of moving targets , 1967, IEEE Trans. Inf. Theory.

[100]  Arch W. Naylor,et al.  Linear Operator Theory in Engineering and Science , 1971 .

[101]  J Brezin,et al.  Function theory on metabelian solvmanifold , 1972 .

[102]  A. Janssen Bargmann transform, Zak transform, and coherent states , 1982 .

[103]  E. Hille Analytic Function Theory , 1961 .

[104]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[105]  Ronald R. Coifman,et al.  Wavelet analysis and signal processing , 1990 .

[106]  J. Munkres,et al.  Calculus on Manifolds , 1965 .

[107]  A. Grossmann,et al.  Transforms associated to square integrable group representations. I. General results , 1985 .

[108]  J. Klauder,et al.  Unitary Representations of the Affine Group , 1968 .