Lecture notes in radar/sonar: Topics in Harmonic analysis with applications to radar and sonar
暂无分享,去创建一个
[1] J. R. Klauder,et al. The design of radar signals having both high range resolution and high velocity resolution , 1960 .
[2] Jeffrey M. Speiser. Wide-band ambiguity functions (Corresp.) , 1967, IEEE Trans. Inf. Theory.
[3] J. Zak. The Kq-Representation in the Dynamics of Electrons in Solids , 1972 .
[4] D. Sattinger,et al. Calculus on Manifolds , 1986 .
[5] J. Mayer,et al. On the Quantum Correction for Thermodynamic Equilibrium , 1947 .
[6] F. Low. Complete sets of wave packets , 1985 .
[7] Thierry Paul,et al. Functions analytic on the half‐plane as quantum mechanical states , 1984 .
[8] W. Rudin. Principles of mathematical analysis , 1964 .
[9] Ingrid Daubechies,et al. The wavelet transform, time-frequency localization and signal analysis , 1990, IEEE Trans. Inf. Theory.
[10] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[11] Louis Auslander,et al. Fiber bundle structures and harmonic analysis of compact heisenberg manifolds , 1972 .
[12] A. Janssen. Gabor representation of generalized functions , 1981 .
[13] Walter Schempp. Neurocomputer Architectures , 1989 .
[14] de Ng Dick Bruijn,et al. Uncertainty principles in Fourier analysis , 1967 .
[15] A. Grossmann,et al. TRANSFORMS ASSOCIATED TO SQUARE INTEGRABLE GROUP REPRESENTATION. 2. EXAMPLES , 1986 .
[16] A. Erdélyi,et al. Higher Transcendental Functions , 1954 .
[17] I. Daubechies. Discrete sets of coherent states and their use in signal analysis , 1987 .
[18] A. Kirillov. Elements of the theory of representations , 1976 .
[19] Edmund Taylor Whittaker,et al. A Course of Modern Analysis , 2021 .
[20] Jacob T. Schwartz,et al. Lie Groups; Lie Algebras , 1968 .
[21] Richard Kronland-Martinet,et al. Analysis of Sound Patterns through Wavelet transforms , 1987, Int. J. Pattern Recognit. Artif. Intell..
[22] A. Weil. Sur certains groupes d'opérateurs unitaires , 1964 .
[23] J. Zak,et al. Rational von Neumann lattices , 1983 .
[24] E. Hille,et al. Analytic Function Theory. Volume II , 1973 .
[25] J. Zak. Dynamics of Electrons in Solids in External Fields , 1968 .
[26] Willard Miller,et al. Symmetry and Separation of Variables , 1977 .
[27] M. Bastiaans,et al. Gabor's expansion of a signal into Gaussian elementary signals , 1980, Proceedings of the IEEE.
[28] M. Rieffel. Von Neumann algebras associated with pairs of lattices in Lie groups , 1981 .
[29] Steven M. Sussman,et al. Least-square synthesis of radar ambiguity functions , 1962, IRE Trans. Inf. Theory.
[30] Arthur S. Hathaway,et al. A COURSE IN MODERN ANALYSIS. , 1903 .
[31] E. J. Kelly,et al. The Radar Measurement of Range, Velocity and Acceleration , 1961, IRE Transactions on Military Electronics.
[32] W. Schempp. Radar ambiguity functions, the Heisenberg group, and holomorphic theta series , 1984 .
[33] I. Daubechies,et al. Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations , 1988 .
[34] Tibor Rado,et al. Continuous Transformations in Analysis , 1955 .
[35] Martin J. Bastiaans,et al. Gabor’s expansion of a signal into a discrete set of Gaussian elementary signals , 1980 .
[36] Steven A. Gaal,et al. Linear analysis and representation theory , 1973 .
[37] D. Swick. AN AMBIGUITY FUNCTION INDEPENDENT OF ASSUMPTIONS ABOUT BANDWIDTH AND CARRIER FREQUENCY , 1966 .
[38] I. M. Glazman,et al. Theory of linear operators in Hilbert space , 1961 .
[39] Tosio Kato. Perturbation theory for linear operators , 1966 .
[40] Ephraim Feig,et al. Tomographic methods in range-Doppler radar , 1986 .
[41] R. Duffin,et al. A class of nonharmonic Fourier series , 1952 .
[42] Y. Meyer,et al. Ondelettes et bases hilbertiennes. , 1986 .
[43] D. Swick. A REVIEW OF WIDEBAND AMBIGUITY FUNCTIONS , 1969 .
[44] M. E. Davison,et al. Tomographic reconstruction with arbitrary directions , 1981 .
[45] Thomas Kailath,et al. Signal processing Part I: signal processing theory , 1990 .
[46] David F. Walnut,et al. Weyl-Heisenberg Wavelet Expansions: Existence and Stability in Weighted Spaces , 1989 .
[47] Ingrid Daubechies,et al. Time-frequency localization operators: A geometric phase space approach , 1988, IEEE Trans. Inf. Theory.
[48] Harold Naparst,et al. Radar signal choice and processing for a dense target environment , 1990 .
[49] Nobuhiko Tatsuuma,et al. Plancherel formula for non-unimodular locally compact groups , 1972 .
[50] A. Grossmann,et al. Wavelet Transforms and Edge Detection , 1988 .
[51] Akihiro Kohari. Harmonic analysis on the group of linear transformations of the straight line , 1961 .
[52] R.N. Bracewell,et al. Signal analysis , 1978, Proceedings of the IEEE.
[53] A. Janssen. Weighted Wigner distributions vanishing on lattices , 1981 .
[54] J. Zak,et al. Amplitudes on von Neumann lattices , 1981 .
[55] John J. Benedetto,et al. Gabor Representations and Wavelets. , 1987 .
[56] A. Grossmann,et al. Proof of completeness of lattice states in the k q representation , 1975 .
[57] R. Tolimieri,et al. Abelian harmonic analysis, theta functions and function algebras on a nilmanifold , 1975 .
[58] Y. Meyer. Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs , 1986 .
[59] W. Schempp,et al. Harmonic analysis on the Heisenberg nilpotent Lie group, with applications to signal theory , 1986 .
[60] T. Claasen,et al. THE WIGNER DISTRIBUTION - A TOOL FOR TIME-FREQUENCY SIGNAL ANALYSIS , 1980 .
[61] A. Janssen. The Zak transform : a signal transform for sampled time-continuous signals. , 1988 .
[62] V. Bargmann. On a Hilbert space of analytic functions and an associated integral transform part I , 1961 .
[63] W. Miller. Symmetry groups and their applications , 1972 .
[64] Richard Tolimieri,et al. Computing decimated finite cross-ambiguity functions , 1988, IEEE Trans. Acoust. Speech Signal Process..
[65] Calvin C. Moore,et al. On the regular representation of a nonunimodular locally compact group , 1976 .
[66] Frank Natterer,et al. On the inversion of the attenuated Radon transform , 1979 .
[67] R. Tolimieri,et al. Radar Ambiguity Functions and Group Theory , 1985 .
[68] A. Grossmann,et al. DECOMPOSITION OF HARDY FUNCTIONS INTO SQUARE INTEGRABLE WAVELETS OF CONSTANT SHAPE , 1984 .
[69] R. Balian. Un principe d'incertitude fort en théorie du signal ou en mécanique quantique , 1981 .
[70] D. A. Dunnett. Classical Electrodynamics , 2020, Nature.
[71] H. Reiter. Classical Harmonic Analysis and Locally Compact Groups , 1968 .
[72] N. Vilenkin. Special Functions and the Theory of Group Representations , 1968 .
[73] Willard Miller,et al. On the special function theory of occupation number space, II , 1965 .
[74] T. MacRobert. Higher Transcendental Functions , 1955, Nature.
[75] Richard Tolimieri,et al. Characterizing the radar ambiguity functions , 1984, IEEE Trans. Inf. Theory.
[76] Idriss Khalil,et al. Sur l'analyse harmonique du groupe affine de la droite , 1974 .
[77] M. Bernfeld,et al. CHIRP Doppler radar , 1984, Proceedings of the IEEE.
[78] Izidor Gertner,et al. Wide-band ambiguity function and a.x+b group , 1990 .
[79] Chung-I Tan,et al. A Passion for Physics: Essays in Honor of Geoffrey Chew , 1986 .
[80] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .
[81] D. F. Johnston,et al. Representations of groups , 1964, The Mathematical Gazette.
[82] Philip M. Woodward,et al. Probability and Information Theory with Applications to Radar , 1954 .
[83] N. Wiener. The Fourier Integral: and certain of its Applications , 1933, Nature.
[84] R. J. Gleiser. Doppler shift for a radar echo , 1979 .
[85] Martin J. Bastiaans,et al. The Expansion of an Optical Signal into a Discrete Set of Gaussian Beams , 1980, DAGM-Symposium.
[86] A. Erdélyi,et al. Tables of integral transforms , 1955 .
[87] A. Grossmann,et al. DECOMPOSITION OF FUNCTIONS INTO WAVELETS OF CONSTANT SHAPE, AND RELATED TRANSFORMS , 1985 .
[88] Christopher Heil,et al. Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..
[89] J. Zak. Lattice operators in crystals for Bravais and reciprocal vectors , 1975 .
[90] V. Bargmann,et al. On the Completeness of Coherent States , 1971 .
[91] A. Papoulis. Ambiguity function in Fourier optics , 1974 .
[92] Calvin H. Wilcox,et al. The Synthesis Problem for Radar Ambiguity Functions , 1991 .
[93] I. Daubechies,et al. PAINLESS NONORTHOGONAL EXPANSIONS , 1986 .
[94] Christopher Heil,et al. Wavelets and frames , 1990 .
[95] Ajem Guido Janssen,et al. Robust data equalization, fractional tap spacing and the Zak transform. , 1987 .
[96] Wilhelm Magnus,et al. Lie Theory and Special Functions , 1969 .
[97] J. Zak. FINITE TRANSLATIONS IN SOLID-STATE PHYSICS. , 1967 .
[98] G. Weiss,et al. Representation theorems for holomorphic and harmonic functions in L[P] . The molecular characterization of certain Hardy spaces , 1980 .
[99] August W. Rihaczek,et al. Radar resolution of moving targets , 1967, IEEE Trans. Inf. Theory.
[100] Arch W. Naylor,et al. Linear Operator Theory in Engineering and Science , 1971 .
[101] J Brezin,et al. Function theory on metabelian solvmanifold , 1972 .
[102] A. Janssen. Bargmann transform, Zak transform, and coherent states , 1982 .
[103] E. Hille. Analytic Function Theory , 1961 .
[104] J. Morlet,et al. Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .
[105] Ronald R. Coifman,et al. Wavelet analysis and signal processing , 1990 .
[106] J. Munkres,et al. Calculus on Manifolds , 1965 .
[107] A. Grossmann,et al. Transforms associated to square integrable group representations. I. General results , 1985 .
[108] J. Klauder,et al. Unitary Representations of the Affine Group , 1968 .