Sparse Representation for Tumor Classification Based on Feature Extraction Using Latent Low-Rank Representation

Accurate tumor classification is crucial to the proper treatment of cancer. To now, sparse representation (SR) has shown its great performance for tumor classification. This paper conceives a new SR-based method for tumor classification by using gene expression data. In the proposed method, we firstly use latent low-rank representation for extracting salient features and removing noise from the original samples data. Then we use sparse representation classifier (SRC) to build tumor classification model. The experimental results on several real-world data sets show that our method is more efficient and more effective than the previous classification methods including SVM, SRC, and LASSO.

[1]  Shuicheng Yan,et al.  Latent Low-Rank Representation for subspace segmentation and feature extraction , 2011, 2011 International Conference on Computer Vision.

[2]  Stephen P. Boyd,et al.  An Interior-Point Method for Large-Scale $\ell_1$-Regularized Least Squares , 2007, IEEE Journal of Selected Topics in Signal Processing.

[3]  Fang-Xiang Wu,et al.  Sparse Representation for Classification of Tumors Using Gene Expression Data , 2009, Journal of biomedicine & biotechnology.

[4]  G. Lloyd,et al.  Utilising non-consensus pathology measurements to improve the diagnosis of oesophageal cancer using a Raman spectroscopic probe. , 2014, The Analyst.

[5]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[6]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Pablo Tamayo,et al.  Metagenes and molecular pattern discovery using matrix factorization , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[8]  J. Benítez,et al.  MicroRNA-based molecular classification of non-BRCA1/2 hereditary breast tumours , 2013, British Journal of Cancer.

[9]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[10]  Constantin F. Aliferis,et al.  A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis , 2004, Bioinform..

[11]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[12]  J. Welsh,et al.  Molecular classification of human carcinomas by use of gene expression signatures. , 2001, Cancer research.

[13]  Chunheng Wang,et al.  Sparse representation for face recognition based on discriminative low-rank dictionary learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Shuicheng Yan,et al.  Exact Subspace Segmentation and Outlier Detection by Low-Rank Representation , 2012, AISTATS.

[15]  Loong Fah Cheong,et al.  Robust Low-Rank Subspace Segmentation with Semidefinite Guarantees , 2010, 2010 IEEE International Conference on Data Mining Workshops.

[16]  De-Shuang Huang,et al.  Independent component analysis-based penalized discriminant method for tumor classification using gene expression data , 2006, Bioinform..

[17]  Yuan Gao,et al.  Improving molecular cancer class discovery through sparse non-negative matrix factorization , 2005 .

[18]  Qian Zhu,et al.  Ontology-aware classification of tissue and cell-type signals in gene expression profiles across platforms and technologies , 2013, Bioinform..

[19]  E. Lander,et al.  MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia , 2002, Nature Genetics.

[20]  Johan A. K. Suykens,et al.  Systematic benchmarking of microarray data classification: assessing the role of non-linearity and dimensionality reduction , 2004, Bioinform..

[21]  E. Lander,et al.  Gene expression correlates of clinical prostate cancer behavior. , 2002, Cancer cell.

[22]  Simon C. K. Shiu,et al.  Metasample-Based Sparse Representation for Tumor Classification , 2011, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[23]  Yi-Zeng Liang,et al.  Using random forest to classify linear B-cell epitopes based on amino acid properties and molecular features. , 2013, Biochimie.

[24]  Debashis Ghosh,et al.  Classification and Selection of Biomarkers in Genomic Data Using LASSO , 2005, Journal of biomedicine & biotechnology.

[25]  Guillermo Sapiro,et al.  Supervised Dictionary Learning , 2008, NIPS.

[26]  J. Mesirov,et al.  Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. , 1999, Science.

[27]  J. Medrano,et al.  SNP discovery in the bovine milk transcriptome using RNA-Seq technology , 2010, Mammalian Genome.

[28]  U. Alon,et al.  Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[29]  J. Mesirov,et al.  Chemosensitivity prediction by transcriptional profiling , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Yong Yu,et al.  Robust Subspace Segmentation by Low-Rank Representation , 2010, ICML.

[31]  Yong Yu,et al.  Robust Recovery of Subspace Structures by Low-Rank Representation , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[33]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[34]  Peter Bühlmann Regression shrinkage and selection via the Lasso: a retrospective (Robert Tibshirani): Comments on the presentation , 2011 .

[35]  E. Lander,et al.  Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[37]  Yi Ma,et al.  The Augmented Lagrange Multiplier Method for Exact Recovery of Corrupted Low-Rank Matrices , 2010, Journal of structural biology.

[38]  Anselmo Cardoso de Paiva,et al.  A mass classification using spatial diversity approaches in mammography images for false positive reduction , 2013, Expert Syst. Appl..

[39]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[40]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[41]  G. Sapiro,et al.  A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography. , 2013, Journal of structural biology.

[42]  Hitoshi Iba,et al.  Prediction of Cancer Class with Majority Voting Genetic Programming Classifier Using Gene Expression Data , 2009, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[43]  Emanuele Menegatti,et al.  A comparison of methods for extracting information from the co-occurrence matrix for subcellular classification , 2013, Expert Syst. Appl..

[44]  Michael A. Saunders,et al.  Atomic Decomposition by Basis Pursuit , 1998, SIAM J. Sci. Comput..

[45]  Nello Cristianini,et al.  Support vector machine classification and validation of cancer tissue samples using microarray expression data , 2000, Bioinform..