The Structure and Reactivity of Single and Multiple Sites on Heterogeneous and Homogeneous Catalysts: Analogies, Differences, and Challenges for Characterization Methods

[1]  L. Cavallo,et al.  Selectivity in propene polymerization with metallocene catalysts. , 2000, Chemical reviews.

[2]  F. d’Acapito,et al.  Equilibria between peroxo and hydroperoxo species in the titanosilicates: an in situ high-resolution XANES investigation. , 2004, Chemphyschem : a European journal of chemical physics and physical chemistry.

[3]  J. Niemantsverdriet,et al.  Bonding of supported chromium during thermal activation of the CrOx/SiO2 (Phillips) ethylene polymerization catalyst , 2001 .

[4]  C. Lamberti,et al.  In situ FTIR spectroscopy of key intermediates in the first stages of ethylene polymerization on the Cr/SiO2 Phillips catalyst: Solving the puzzle of the initiation mechanism? , 2006 .

[5]  Christopher W. Jones,et al.  On the Nature of the Active Species in Palladium Catalyzed Mizoroki–Heck and Suzuki–Miyaura Couplings – Homogeneous or Heterogeneous Catalysis, A Critical Review , 2006 .

[6]  L. Martino,et al.  Polymerization of propene in the presence of MgCl2-supported Ziegler-Natta catalysts, 2. Effects of the co-catalyst composition† , 1986 .

[7]  F. d’Acapito,et al.  Reactivity of Cr Species Grafted on SiO2/Si(100) Surface: A Reflection Extended X-ray Absorption Fine Structure Study down to the Submonolayer Regime , 2007 .

[8]  M. Mcdaniel Supported Chromium Catalysts for Ethylene Polymerization , 1985 .

[9]  F. Geobaldo,et al.  DRS UV-Vis and EPR spectroscopy of hydroperoxo and superoxo complexes in titanium silicalite , 1992 .

[10]  P. Kluson,et al.  Selective hydrogenation over ruthenium catalysts , 1995 .

[11]  A. Segre,et al.  High-Resolution 13C NMR Configurational Analysis of Polypropylene Made with MgCl2-Supported Ziegler−Natta Catalysts. 1. The “Model” System MgCl2/TiCl4−2,6-Dimethylpyridine/Al(C2H5)3 , 1999 .

[12]  Frank Glorius,et al.  Asymmetric heterogeneous catalysis. , 2006, Angewandte Chemie.

[13]  Weiguo Song,et al.  Methylbenzenes Are the Organic Reaction Centers for Methanol-to-Olefin Catalysis on HSAPO-34 , 2000 .

[14]  W. Alley,et al.  Ziegler-type hydrogenation catalysts made from group 8–10 transition metal precatalysts and AlR3 cocatalysts: A critical review of the literature , 2010 .

[15]  A. Leipertz,et al.  Infrared spectroscopy of a Wilkinson catalyst in a room-temperature ionic liquid. , 2008, Chemphyschem : a European journal of chemical physics and physical chemistry.

[16]  G. Spoto,et al.  Low-temperature Fourier-transform infrared investigation of the interaction of CO with nanosized ZSM5 and silicalite , 1992 .

[17]  P. J. Lemstra,et al.  Planar model system for olefin polymerization: the Phillips CrOx/SiO2 catalyst , 2000 .

[18]  Michael Stöcker,et al.  Methanol-to-hydrocarbons: catalytic materials and their behavior 1 Dedicated to my wife Wencke Ophau , 1999 .

[19]  Hans-Dieter Martin,et al.  Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren , 1955 .

[20]  C. Lamberti,et al.  Ti location in the MFI framework of Ti-Silicalite-1: a neutron powder diffraction study. , 2001, Journal of the American Chemical Society.

[21]  P. Dyer,et al.  Mechanistic Study of the Calcination of Supported Chromium(III) Precursors for Ethene Polymerization Catalysts , 1996 .

[22]  Hua Chen,et al.  Effect of organic additives on partial hydrogenation of benzene , 2008 .

[23]  D. H. Morgan,et al.  Advances in selective ethylene trimerisation – a critical overview , 2004 .

[24]  K. Lillerud,et al.  Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: ethene formation is mechanistically separated from the formation of higher alkenes. , 2006, Journal of the American Chemical Society.

[25]  Unni Olsbye,et al.  Conversion of Methanol to Alkenes over Medium-and Large-Pore Acidic Zeolites : Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity , 2007 .

[26]  K. Burgess,et al.  Catalytic homogeneous asymmetric hydrogenations of largely unfunctionalized alkenes. , 2005, Chemical reviews.

[27]  C. Lamberti,et al.  XAFS Study of Ti-Silicalite - Structure of Framework Ti(IV) in the Presence and Absence of Reactive Molecules (H2O, NH3) and Comparison with Ultraviolet-Visible and Ir Results , 1994 .

[28]  A. Baiker,et al.  Asymmetric catalysis at chiral metal surfaces. , 2007, Chemical reviews.

[29]  C. Lamberti,et al.  The structure of active centers and the ethylene polymerization mechanism on the Cr/SiO2 catalyst: a frontier for the characterization methods. , 2005, Chemical reviews.

[30]  Weiguo Song,et al.  An oft-studied reaction that may never have been: direct catalytic conversion of methanol or dimethyl ether to hydrocarbons on the solid acids HZSM-5 or HSAPO-34. , 2002, Journal of the American Chemical Society.

[31]  A. Alimardanov,et al.  Use of "Homeopathic" Ligand-Free Palladium as Catalyst for Aryl-Aryl Coupling Reactions , 2004 .

[32]  A. Corma,et al.  Design of highly active and chemoselective bimetallic gold–platinum hydrogenation catalysts through kinetic and isotopic studies , 2009 .

[33]  F. Bonino,et al.  Conversion of methanol to hydrocarbons over zeolite H-ZSM-5 : On the origin of the olefinic species , 2007 .

[34]  Alceo Macchioni,et al.  Ion pairing in transition-metal organometallic chemistry. , 2005, Chemical reviews.

[35]  C. Lamberti,et al.  Vibrational structure of titanium silicate catalysts. A spectroscopic and theoretical study. , 2001, Journal of the American Chemical Society.

[36]  C. Lamberti,et al.  Evidence of the Presence of Two Different Framework Ti(IV) Species in Ti−Silicalite-1 in Vacuo Conditions: an EXAFS and a Photoluminescence Study , 1998 .

[37]  W. Yuan,et al.  Hydrogenation of cyclohexene over Ru–Zn/Ru(0 0 0 1) surface alloy: A first principles density functional study , 2009 .

[38]  S. Bordiga,et al.  Selective catalysis and nanoscience: an inseparable pair. , 2007, Chemistry.

[39]  J. Scholten,et al.  Partial liquid-phase hydrogenation of benzene to cyclohexene over ruthenium catalysts in the presence of an aqueous salt solution , 1992 .

[40]  C. Lamberti,et al.  Propene oligomerization on H-mordenite: Hydrogen-bonding interaction, chain initiation, propagation and hydrogen transfer studied by temperature-programmed FTIR and UV-VIS spectroscopies , 1997 .

[41]  L. Cavallo,et al.  Dynamic properties of metallocenium ion pairs in solution by atomistic simulations. , 2006, Journal of the American Chemical Society.

[42]  J. Dupont,et al.  The role of Pd nanoparticles in ionic liquid in the Heck reaction. , 2005, Journal of the American Chemical Society.

[43]  A. Baiker,et al.  Adsorption of cinchonidine on platinum: a DFT insight in the mechanism of enantioselective hydrogenation of activated ketones , 2004 .

[44]  D. Ferri,et al.  Chirally modified platinum generated by adsorption of cinchonidine ether derivatives: towards uncovering the chiral sites. , 2007, Chemistry.

[45]  R. Finke,et al.  Rh(0) Nanoclusters in Benzene Hydrogenation Catalysis: Kinetic and Mechanistic Evidence that a Putative [(C8H17)3NCH3]+[RhCl4]- Ion-Pair Catalyst Is Actually a Distribution of Cl- and [(C8H17)3NCH3]+ Stabilized Rh(0) Nanoclusters , 1998 .

[46]  C. Sunderland,et al.  Functional analogues of cytochrome c oxidase, myoglobin, and hemoglobin. , 2004, Chemical reviews.

[47]  G. Spoto,et al.  IR study of ethene and propene oligomerization on H-ZSM-5: hydrogen-bonded precursor formation, initiation and propagation mechanisms and structure of the entrapped oligomers , 1994 .

[48]  C. Lamberti,et al.  Tuning the structure, distribution and reactivity of polymerization centres of Cr(II)/SiO2 Phillips catalyst by controlled annealing , 2005 .

[49]  P. Zwietering,et al.  Olefins as intermediates in the hydrogenation of aromatic hydrocarbons , 1963 .

[50]  M. Reetz,et al.  Phosphane-Free Palladium-Catalyzed Coupling Reactions: The Decisive Role of Pd Nanoparticles. , 2000, Angewandte Chemie.

[51]  W. Yuan,et al.  Partial hydrogenation of benzene over the metallic Zn modified Ru-based catalyst , 2009 .

[52]  G. D. Bukatov,et al.  Supported Ziegler–Natta catalysts for propylene polymerization. Study of surface species formed at interaction of electron donors and TiCl4 with activated MgCl2 , 2009 .

[53]  G. Marin,et al.  Understanding the failure of direct C-C coupling in the zeolite-catalyzed methanol-to-olefin process. , 2006, Angewandte Chemie.

[54]  G. Natta Stereospezifische Katalysen und isotaktische Polymere , 1956 .

[55]  W. Knowles Asymmetric Hydrogenations (Nobel Lecture 2001) , 2003 .

[56]  A. Segre,et al.  "Oscillating" metallocene catalysts: what stops the oscillation? , 2003, Journal of the American Chemical Society.

[57]  L. Cavallo,et al.  Ziegler-Natta catalytic systems , 2008 .

[58]  Maarten Merkx,et al.  Dioxygen Activation and Methane Hydroxylation by Soluble Methane Monooxygenase: A Tale of Two Irons and Three Proteins. , 2001, Angewandte Chemie.

[59]  Klein,et al.  Probing the mechanisms of enantioselective hydrogenation of simple olefins with chiral rhodium catalysts in the presence of anions , 2000, Chemistry.

[60]  W. Kaminsky Olefin polymerization catalyzed by metallocenes , 2001 .

[61]  B. Arstad,et al.  The reactivity of molecules trapped within the SAPO-34 cavities in the methanol-to-hydrocarbons reaction. , 2001, Journal of the American Chemical Society.

[62]  R. Lamanna,et al.  Periodic DFT and High-Resolution Magic-Angle-Spinning (HR-MAS) 1H NMR Investigation of the Active Surfaces of MgCl2-Supported Ziegler−Natta Catalysts. The MgCl2 Matrix , 2008 .

[63]  Kyriakos Komvopoulos,et al.  Platinum nanoparticle shape effects on benzene hydrogenation selectivity. , 2007, Nano letters.

[64]  J. Liu,et al.  Discrimination of the roles of CdSO4 and ZnSO4 in liquid phase hydrogenation of benzene to cyclohexene , 2009 .

[65]  K. Lillerud,et al.  Mechanistic insight into the methanol-to-hydrocarbons reaction , 2005 .

[66]  J. Nicholas,et al.  Theoretical study of the methylbenzene side-chain hydrocarbon pool mechanism in methanol to olefin catalysis. , 2004, Journal of the American Chemical Society.

[67]  T. Risse,et al.  Preparation and characterization of model catalysts: from ultrahigh vacuum to in situ conditions at the atomic dimension , 2003 .

[68]  J. Niemantsverdriet,et al.  Investigation of Planar Ziegler-Natta Model Catalysts Using Attenuated Total Reflection Infrared Spectroscopy , 2009 .

[69]  D. Petersen,et al.  The methanol-to-hydrocarbons reaction: insight into the reaction mechanism from [12C]benzene and [13C]methanol coreactions over zeolite H-beta , 2004 .

[70]  R. Finke,et al.  A More General Approach to Distinguishing "Homogeneous" from "Heterogeneous" Catalysis: Discovery of Polyoxoanion- and Bu4N+-Stabilized, Isolable and Redissolvable, High-Reactivity Ir.apprx.190-450 Nanocluster Catalysts , 1994 .

[71]  Unni Olsbye,et al.  Kinetic studies of zeolite-catalyzed methylation reactions. Part 2. Co-reaction of [12C]propene or [12C]n-butene and [13C]methanol , 2005 .

[72]  Ivar M. Dahl,et al.  On the Reaction Mechanism for Hydrocarbon Formation from Methanol over SAPO-34 2. Isotopic Labeling Studies of the Co-reaction of Propene and Methanol , 1994 .

[73]  F. Zaera Regio-, stereo-, and enantioselectivity in hydrocarbon conversion on metal surfaces. , 2009, Accounts of chemical research.

[74]  G. Somorjai,et al.  Surface science of single-site heterogeneous olefin polymerization catalysts , 2006, Proceedings of the National Academy of Sciences.

[75]  Pj Piet Lemstra,et al.  Polyethylene formation on a planar surface science model of a chromium oxide polymerization catalyst , 1999 .

[76]  K. Lillerud,et al.  Spectroscopic evidence for a persistent benzenium cation in zeolite H-beta. , 2003, Journal of the American Chemical Society.

[77]  C. Lamberti,et al.  Ti-Peroxo Species in the TS-1/H2O2/H2O System , 2004 .

[78]  C. Lamberti,et al.  Fourier-Transform Infrared Study of CO Adsorbed at 77 K on H-Mordenite and Alkali-Metal-Exchanged Mordenites , 1995 .

[79]  Sukbok Chang,et al.  Ruthenium-catalyzed Heck-type olefination and Suzuki coupling reactions: studies on the nature of catalytic species. , 2004, Journal of the American Chemical Society.