Feasibility Study for Future Space-Borne Coherent Doppler Wind Lidar, Part 3: Impact Assessment Using Sensitivity Observing System Simulation Experiments

This study evaluated the impact of a future space-borne Doppler wind lidar (DWL) on a super-low-altitude orbit by using an observing system simulation experiment (OSSE) based on a sensitivity observing system experiment (SOSE) approach. Realistic atmospheric data, including wind and temperature, was provided as “pseudo-truth” (PT) to simulate DWL observations. Hourly aerosols and clouds that are consistent with PT winds were also created for the simulation. A full-scale lidar simulator, which is described in detail in the companion paper, simulated realistic line-of-sight wind measurements and observation quality information, such as signal-to-noise ratio (SNR) Corresponding author: Kozo Okamoto, Meteorological Research Institute of Japan Meteorological Agency, 1-1 Nagamine, Tsukuba, Ibaraki 305-0052, Japan E-mail: kokamoto@mri-jma.go.jp J-stage Advance Published Date: 5 February 2018 ©The Author(s) 2018. This is an open access article published by the Meteorological Society of Japan under a Creative Commons Attribution 4.0 International (CC BY 4.0) license (http://creativecommons.org/license/by/4.0). Journal of the Meteorological Society of Japan Vol. 96, No. 2 180

[1]  L. Isaksen,et al.  THE ATMOSPHERIC DYNAMICS MISSION FOR GLOBAL WIND FIELD MEASUREMENT , 2005 .

[2]  L. Isaksen,et al.  The assimilation of horizontal line‐of‐sight wind information into the ECMWF data assimilation and forecasting system. Part I: The assessment of wind impact , 2015 .

[3]  Ad Stoffelen,et al.  Simulation of wind profiles from a space‐borne Doppler wind lidar , 2003 .

[4]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[5]  Riko Oki,et al.  Feasibility Study for Future Space-Borne Coherent Doppler Wind Lidar, Part 1: Instrumental Overview for Global Wind Profile Observation , 2017 .

[6]  Michiko Masutani,et al.  Observation system simulation experiments for a global wind observing sounder , 2012 .

[7]  Z. Pu,et al.  LIDAR-MEASURED WIND PROFILES The Missing Link in the Global Observing System , 2014 .

[8]  Ad Stoffelen,et al.  Sensitivity Observing System Experiment (SOSE)-a new effective NWP-based tool in designing the global observing system , 2008 .

[9]  Riko Oki,et al.  Measurement Performance Assessment of Future Space-Borne Doppler Wind Lidar for Numerical Weather Prediction , 2016 .

[10]  Ad Stoffelen,et al.  Impact assessment of prospective spaceborne Doppler wind lidar observation scenarios , 2008 .

[11]  Stephen J. Lord,et al.  Observing system simulation experiments at the National Centers for Environmental Prediction , 2010 .

[12]  気象庁 Outline of the operational numerical weather prediction at the Japan Meteorological Agency , 1977 .

[13]  C. Kobayashi,et al.  The JRA-55 Reanalysis: General Specifications and Basic Characteristics , 2015 .

[14]  Linearity aspects of the ensemble of data assimilations technique , 2015 .

[15]  Ad Stoffelen,et al.  A cycled sensitivity observing system experiment on simulated Doppler wind lidar data during the 1999 Christmas storm 'Martin' , 2008 .

[16]  J. Affeldt,et al.  The feasibility study , 2019, The Information System Consultant’s Handbook.

[17]  Christopher K. Wikle,et al.  Atmospheric Modeling, Data Assimilation, and Predictability , 2005, Technometrics.

[18]  Chikako Takahashi,et al.  Feasibility Study for Future Spaceborne Coherent Doppler Wind Lidar, Part 2: Measurement Simulation Algorithms and Retrieval Error Characterization , 2017 .

[19]  Toshiyuki Ishibashi,et al.  Observing system simulation experiments with multiple methods , 2014, Asia-Pacific Environmental Remote Sensing.

[20]  Kazuki Shimoji Motion tracking and cloud height assignment methods for Himawari-8 AMV , 2014 .

[21]  Robert Atlas,et al.  Atmospheric Observations and Experiments to Assess Their Usefulness in Data Assimilation , 1997 .

[22]  H. Tsujino,et al.  A New Global Climate Model of the Meteorological Research Institute: MRI-CGCM3 —Model Description and Basic Performance— , 2012 .

[23]  Lars Isaksen,et al.  Observing‐system impact assessment using a data assimilation ensemble technique: application to the ADM–Aeolus wind profiling mission , 2007 .

[24]  Ad Stoffelen,et al.  Impact Assessment of Simulated Doppler Wind Lidars with a Multivariate Variational Assimilation in the Tropics , 2008 .

[25]  E. Källén,et al.  Dynamical response of equatorial waves in four-dimensional variational data assimilation , 2004 .

[26]  Ad Stoffelen,et al.  ADM‐Aeolus Doppler wind lidar Observing System Simulation Experiment , 2006 .

[27]  A. Stoffelen,et al.  The performance of Aeolus in heterogeneous atmospheric conditions using high-resolution radiosonde data , 2014 .

[28]  R. Atlas,et al.  Impact of Doppler lidar wind observations on a single-level meteorological analysis , 2002, SPIE Optics + Photonics.

[29]  J. Woollen,et al.  Impact of Different Satellite Wind Lidar Telescope Configurations on NCEP GFS Forecast Skill in Observing System Simulation Experiments , 2015 .

[30]  Robert Atlas,et al.  Observing System Simulation Experiments (OSSEs) to Evaluate the Potential Impact of an Optical Autocovariance Wind Lidar (OAWL) on Numerical Weather Prediction , 2015 .

[31]  Masaru Chiba,et al.  Global Simulation of Dust Aerosol with a Chemical Transport Model, MASINGAR( ADEC-Aeolian Dust Experiment on Climate Impact-) , 2005 .