Morphology of Electrochemically and Chemically Deposited Metals

This book describes the newest achievements in the area of electrochemically and chemically deposited metals and alloys. In particular, the book is devoted to the surface morphology of deposited metals and alloys. It contains an in-depth analysis of the influence of the parameters of electrodeposition or chemical deposition of metals and alloys, which will likely lead to technological advances in industrial settings world-wide. Professionals in electrometallurgical and electroplating plants will find the book indispensable. This book will also be useful in the automotive, aerospace, electronics, energy device and biomedical industries. In academia, researchers in electrodeposition at both undergraduate and graduate levels will find this book a very valuable resource for their courses and projects

[1]  C. Wagner,et al.  Theoretical Analysis of the Current Density Distribution in Electrolytic Cells , 1951 .

[2]  J. L. Barton,et al.  The electrolytic growth of dendrites from ionic solutions , 1962, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  K. Blurton,et al.  Controlled Current Deposition of Zinc from Alkaline Solution , 1969 .

[4]  M. Hitchman,et al.  Current distribution on a rotating disc electrode , 1971 .

[5]  K. I. Popov,et al.  Transport-Controlled Deposition and Dissolution of Metals , 1972 .

[6]  M. Pavlović,et al.  Formation of powdered copper deposits by square-wave pulsating overpotential , 1977 .

[7]  M. Pavlović,et al.  The effect of pulsating overpotential on the morphology of electrodeposited silver powder particles , 1978 .

[8]  M. Pavlović,et al.  The comparison of galvanostatic and potentiostatic copper powder deposition on platinum and aluminium electrodes , 1978 .

[9]  K. Popov,et al.  Electrodeposition of zinc on copper from alkaline zincate solutions , 1978 .

[10]  M. Pavlović,et al.  Dendritic electrocrystallization and the mechanism of powder formation in the potentiostatic electrodeposition of metals , 1981 .

[11]  K. I. Popov,et al.  Some aspects of current density distribution in electrolytic cells I: Dendritic growth of cadmium at the cathode edge in galvanostatic electrodeposition , 1983 .

[12]  N. Krstajić,et al.  The mechanism of spongy electrodeposits formation on inert substrate at low over potentials , 1983 .

[13]  K. I. Popov,et al.  Fundamental aspects of pulsating current metal electrodeposition VII: The comparison of current density distributions in pulsating current and periodic reverse current electrodeposition of metals , 1983 .

[14]  M. Maksimović,et al.  The effect of A.C. superimposed on D.C. in the electrodeposition of metals , 1983 .

[15]  N. Krstajić,et al.  Fundamental aspects of pulsating current metal electrodeposition VIII: The effect of pause-to-pulse ratio on microthrowing power of metal deposition , 1984 .

[16]  N. Krstajić,et al.  Fundamental aspects of plating technology III: The effect of electrodeposition from complex salt solutions on metal distribution over macroprofiles , 1984 .

[17]  N. Krstajić,et al.  Fundamental aspects of plating technology V: The effect of strongly adsorbed species on the morphology of metal deposits , 1985 .

[18]  S. Zecevic,et al.  Surface roughening and dendritic growth in pulsating overpotential copper electrodeposition , 1986 .

[19]  Joseph Yahalom,et al.  Formation of composition-modulated alloys by electrodeposition , 1987 .

[20]  M. Pavlović,et al.  Electrode surface coarsening in pulsating overpotential copper electrodeposition , 1988 .

[21]  Moshe P. Dariel,et al.  Electrodeposited Cu‐Ni Textured Superlattices , 1988 .

[22]  M. Pavlović,et al.  Morphology of tin powder particles obtained in electrodeposition on copper cathode by constant and square-wave pulsating overpotential from Sn(II) alkaline solution , 1989 .

[23]  D. P. Anderson,et al.  Wavelength-Property Correlation in Electrodeposited Ultrastructured Cu-Ni Multilayers. , 1990 .

[24]  A. S. Edelstein,et al.  Nanoindentation study of the mechanical properties of copper‐nickel multilayered thin films , 1990 .

[25]  D. M. Tench,et al.  Considerations in Electrodeposition of Compositionally Modulated Alloys , 1990 .

[26]  M. Pavlović,et al.  The effect of the pause-to-pulse ratio on the morphology of metal powder particles electrodeposited by square-wave pulsating overpotential , 1991 .

[27]  D. M. Tench,et al.  Tensile Properties of Nanostructured Ni‐Cu Multilayered Materials Prepared by Electrodeposition , 1991 .

[28]  M. Pavlović,et al.  Electrodeposition of Metal Powders with Controlled Particle Grain Size and Morphology , 1993 .

[29]  M. Schlesinger,et al.  Electrochemically Layered Copper‐Nickel Nanocomposites with Enhanced Hardness , 1994 .

[30]  R. Winand Electrodeposition of metals and alloys-new results and perspectives , 1994 .

[31]  David S. Lashmore,et al.  Giant magnetoresistance peaks in CoNiCu/Cu multilayers grown by electrodeposition , 1994 .

[32]  H. Y. Cheh,et al.  Pulsed Electrodeposition of Copper/Nickel Multilayers on a Rotating Disk Electrode II . Potentiostatic Deposition , 1995 .

[33]  D. Landolt,et al.  Effect of Off‐Time on the Composition of Pulse‐Plated Cu‐Ni Alloys , 1995 .

[34]  K. D. Bird,et al.  Giant Magnetoresistance in Electrodeposited Ni/Cu and Co/Cu Multilayers , 1995 .

[35]  R. Cammarata,et al.  Dependence of hardness on modulation amplitude in electrodeposited Cu-Ni compositionally modulated thin films , 1995 .

[36]  Á. Cziráki,et al.  Giant magnetoresistance in self-supporting electrodeposited NiCu/Cu multilayers , 1996 .

[37]  V. Radmilović,et al.  Morphology of lead dendrites electrodeposited by square-wave pulsating overpotential , 1997 .

[38]  D. Landolt,et al.  A surface coverage model for pulse-plating of binary alloys exhibiting a displacement reaction , 1997 .

[39]  V. Jović,et al.  Intermediate layers in electrodeposited CMA coatings , 1998 .

[40]  M. Pavlović,et al.  THE DETERMINATION OF THE OPTIMUM CURRENT WAVE IN REVERSING CURRENT METAL ELECTRODEPOSITION , 1998 .

[41]  T. O’keefe,et al.  Growth of electrolytic copper dendrites and their adhesion to an epoxy resin , 1998 .

[42]  Á. Cziráki,et al.  A cross-sectional high-resolution transmission electron microscopy study of electrodeposited Ni–Cu/Cu multilayers , 1998 .

[43]  I. Popov,et al.  The current distribution in an electrochemical cell. Part V: The determination of the depth of the current line penetration between the edges of the electrodes and the side walls of the cell , 1999 .

[44]  M. Kostic,et al.  The properties of chromium electrodeposited with programmed currents. Part II. Reversing current , 2000 .

[45]  K. I. Popov,et al.  A new current line division concept for the determination of the current distribution in electrochemical cells. Part I. Theoretical background of the corner weakness effect in electroforming , 2000 .

[46]  C. Marozzi,et al.  Development of electrode morphologies of interest in electrocatalysis. Part 1: Electrodeposited porous nickel electrodes , 2000 .

[47]  F. Ebrahimi,et al.  Microstructure/mechanical properties relationship in electrodeposited Ni/Cu nanolaminates , 2001 .

[48]  V. Radmilović,et al.  The effect of particle structure on apparent density of electrolytic copper powder , 2001 .

[49]  K. I. Popov,et al.  Fundamental Aspects of Electrometallurgy , 2002 .

[50]  G. Pavlovic,et al.  The effect of reversing current deposition on the apparent density of electrolytic copper powder , 2002 .

[51]  M. Pavlović,et al.  Electrodeposition and morphology of Ni, Co and Ni–Co alloy powders: Part II. Ammonium chloride supporting electrolyte , 2007 .

[52]  B. Grgur,et al.  Physical and mathematical models of an inert macroelectrode modified with active hemispherical microelectrodes , 2007 .

[53]  M. Pavlović,et al.  Determination of Critical Conditions for the Formation of Electrodeposited Copper Structures Suitable for Electrodes in Electrochemical Devices , 2007, Sensors (Basel, Switzerland).

[54]  M. Pavlović,et al.  The effect of hydrogen co-deposition on the morphology of copper electrodeposits. II. Correlation between the properties of electrolytic solutions and the quantity of evolved hydrogen , 2008 .

[55]  M. Chandrasekar,et al.  Pulse and pulse reverse plating—Conceptual,advantages and applications , 2008 .

[56]  P. Živković,et al.  Polarization curves in the ohmic controlled electrodeposition of metals , 2009 .

[57]  M. Pavlović,et al.  Application of pulsating overpotential regime on the formation of copper deposits in the range of hydrogen co-deposition , 2010 .

[58]  M. Pavlović,et al.  Influence of potential pulse conditions on the formation of honeycomb-like copper electrodes , 2009 .

[59]  P. Živković,et al.  The Effect of Morphology of Activated Electrodes on Their Electrochemical Activity , 2010 .

[60]  C. Chung,et al.  Impact of key deposition parameters on the morphology of silver foams prepared by dynamic hydrogen template deposition , 2010 .

[61]  G. Branković,et al.  The effect of the electrode surface roughness at low level of coarseness on the polarization characteristics of electrochemical processes , 2010 .

[62]  Anthony P O'Mullane,et al.  Honeycomb nanogold networks with highly active sites. , 2010, Chemical communications.

[63]  N. Nikolić,et al.  Hydrogen Co-deposition Effects on the Structure of Electrodeposited Copper , 2010 .

[64]  G. Branković,et al.  Effect of parameters of square-wave pulsating current on copper electrodeposition in the hydrogen co-deposition range , 2010 .

[65]  L. Jones,et al.  Direct electrodeposition of porous platinum honeycomb structures , 2011 .

[66]  G. Branković,et al.  Morphology and internal structure of copper deposits electrodeposited by the pulsating current regime in the hydrogen co-deposition range , 2011, Journal of Solid State Electrochemistry.

[67]  G. Branković,et al.  Effect of the anodic current density on copper electrodeposition in the hydrogen co-deposition range by the reversing current (RC) regime , 2011 .

[68]  U. Lačnjevac,et al.  Formation of two-dimensional (2D) lead dendrites by application of different regimes of electrolysis , 2012, Journal of Solid State Electrochemistry.

[69]  K. I. Popov,et al.  A mathematical model of the current density distribution in electrochemical cells , 2011 .

[70]  C. Chung,et al.  Nanoporous palladium with sub-10 nm dendrites by electrodeposition for ethanol and ethylene glycol oxidation. , 2012, Nanoscale.

[71]  G. Branković,et al.  Comparison of open porous copper structures obtained by the different current regimes of electrolysis , 2012 .

[72]  M. Pavlović,et al.  Correlate between morphology of powder particles obtained by the different regimes of electrolysis and the quantity of evolved hydrogen , 2012 .

[73]  G. Branković,et al.  A new insight into the mechanism of lead electrodeposition: Ohmic-diffusion control of the electrodeposition process , 2013 .

[74]  N. Nikolić,et al.  A New Approach to the Understanding of the Mechanism of Lead Electrodeposition , 2014 .

[75]  G. Branković,et al.  The potentiostatic current transients and the role of local diffusion fields in formation of the 2D lead dendrites from the concentrated electrolyte , 2015 .

[76]  B. Jokić,et al.  The shape of the polarization curve and diagnostic criteria for control of the metal electrodeposition process , 2016 .

[77]  On the Mechanism of Metal Electrocrystallization , 2018 .