Ca2+ imaging in the mammalian brain in vivo.

Changes in intracellular free calcium ion concentration ([Ca(2+)](i)) have been visualized over more than two decades using fluorescent dyes and optical microscopy. So far, however, most imaging studies have been performed on isolated cells or brain tissue. Here, we review approaches to measure cellular [Ca(2+)](i) changes in vivo, i.e. within the intact brain of a living animal. In particular we describe the application of two-photon microscopy to the mammalian central nervous system, which has recently enabled studies of Ca(2+) dynamics in individual dendrites in anaesthetized rats. New developments in microscopy and labeling techniques are creating further opportunities to study Ca(2+) dynamics in vivo and are likely to make measurements of spatio-temporal [Ca(2+)](i) distributions feasible even in awake, behaving mammals.

[1]  Rafael Yuste,et al.  Imaging calcium dynamics in dendritic spines , 1996, Current Opinion in Neurobiology.

[2]  Two-photon Imaging of Neuronal Function in the Neocortex In Vivo , 2000 .

[3]  John White,et al.  Long-term two-photon fluorescence imaging of mammalian embryos without compromising viability , 1999, Nature Biotechnology.

[4]  J. Fetcho,et al.  Visualization of active neural circuitry in the spinal cord of intact zebrafish. , 1995, Journal of neurophysiology.

[5]  J. Schiller,et al.  NMDA spikes in basal dendrites of cortical pyramidal neurons , 2000, Nature.

[6]  M. Egelhaaf,et al.  Neural Processing of Naturalistic Optic Flow , 2001, The Journal of Neuroscience.

[7]  C. Klee,et al.  Calcium as a cellular regulator , 1999 .

[8]  R. Tsien Fluorescent probes of cell signaling. , 1989, Annual review of neuroscience.

[9]  J Bischofberger,et al.  Action potential propagation into the presynaptic dendrites of rat mitral cells , 1997, The Journal of physiology.

[10]  M Egelhaaf,et al.  In vivo imaging of calcium accumulation in fly interneurons as elicited by visual motion stimulation. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[11]  B. Sakmann,et al.  In vivo, low-resistance, whole-cell recordings from neurons in the anaesthetized and awake mammalian brain , 2002, Pflügers Archiv.

[12]  S W Hell,et al.  Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. , 1999, Biophysical journal.

[13]  A Miyawaki,et al.  Dynamic and quantitative Ca2+ measurements using improved cameleons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[14]  K. L. Tucker In vivo imaging of the mammalian nervous system using fluorescent proteins , 2001, Histochemistry and Cell Biology.

[15]  W. Denk,et al.  Two-photon laser scanning fluorescence microscopy. , 1990, Science.

[16]  Rafael Yuste,et al.  A custom-made two-photon microscope and deconvolution system , 2000, Pflügers Archiv.

[17]  Bartlett W. Mel,et al.  Impact of Active Dendrites and Structural Plasticity on the Memory Capacity of Neural Tissue , 2001, Neuron.

[18]  B. Connors,et al.  Regenerative activity in apical dendrites of pyramidal cells in neocortex. , 1993, Cerebral cortex.

[19]  R. Menzel,et al.  The glomerular code for odor representation is species specific in the honeybee Apis mellifera , 1999, Nature Neuroscience.

[20]  Kerry R. Delaney,et al.  Odour‐evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli , 2001 .

[21]  B T Hyman,et al.  Growth Arrest of Individual Senile Plaques in a Model of Alzheimer's Disease Observed by In Vivo Multiphoton Microscopy , 2001, The Journal of Neuroscience.

[22]  Roberto Malinow,et al.  Genetic Manipulation of the Odor-Evoked Distributed Neural Activity in the Drosophila Mushroom Body , 2001, Neuron.

[23]  A. Borst,et al.  Dendritic integration and its role in computing image velocity. , 1998, Science.

[24]  J. Fetcho,et al.  Monitoring activity in neuronal populations with single-cell resolution in a behaving vertebrate , 1998, The Histochemical Journal.

[25]  D. Tank,et al.  In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.

[26]  W. Denk,et al.  Dendritic spines as basic functional units of neuronal integration , 1995, Nature.

[27]  R. Friedrich,et al.  Combinatorial and Chemotopic Odorant Coding in the Zebrafish Olfactory Bulb Visualized by Optical Imaging , 1997, Neuron.

[28]  Kevin Truong,et al.  FRET-based in vivo Ca2+ imaging by a new calmodulin-GFP fusion molecule , 2001, Nature Structural Biology.

[29]  Winfried Denk,et al.  Spread of dendritic excitation in layer 2/3 pyramidal neurons in rat barrel cortex in vivo , 1999, Nature Neuroscience.

[30]  D. Kleinfeld,et al.  In vivo dendritic calcium dynamics in neocortical pyramidal neurons , 1997, Nature.

[31]  Martin Egelhaaf,et al.  Transfer of Visual Motion Information via Graded Synapses Operates Linearly in the Natural Activity Range , 2001, The Journal of Neuroscience.

[32]  F. Helmchen Dendrites as biochemical compartments , 1999 .

[33]  A. Smit,et al.  Synapse Formation between Central Neurons Requires Postsynaptic Expression of the MEN1 Tumor Suppressor Gene , 2001, The Journal of Neuroscience.

[34]  K. Oka,et al.  Dendritic Ca2+ transient increase evoked by wind stimulus in the cricket giant interneuron , 1999, Neuroscience Letters.

[35]  Holger G. Krapp,et al.  Neural encoding of behaviourally relevant visual-motion information in the fly , 2002, Trends in Neurosciences.

[36]  K. Svoboda,et al.  Experience-dependent plasticity of dendritic spines in the developing rat barrel cortex in vivo , 2000, Nature.

[37]  K. Svoboda,et al.  Photon Upmanship: Why Multiphoton Imaging Is More than a Gimmick , 1997, Neuron.

[38]  Rafael Yuste,et al.  Imaging neurons : a laboratory manual , 1999 .

[39]  Matt Wachowiak,et al.  Distributed and concentration-invariant spatial representations of odorants by receptor neuron input to the turtle olfactory bulb. , 2002, Journal of neurophysiology.

[40]  David W. Tank,et al.  Dendritic calcium dynamics , 1994, Current Opinion in Neurobiology.

[41]  Rafael Yuste,et al.  Ca2+ accumulations in dendrites of neocortical pyramidal neurons: An apical band and evidence for two functional compartments , 1994, Neuron.

[42]  J. Fetcho,et al.  In Vivo Imaging of Zebrafish Reveals Differences in the Spinal Networks for Escape and Swimming Movements , 2001, The Journal of Neuroscience.

[43]  A. Borst,et al.  Dendritic processing of synaptic information by sensory interneurons , 1994, Trends in Neurosciences.

[44]  K. Svoboda,et al.  Two-photon imaging in living brain slices. , 1999, Methods.

[45]  H. Cline,et al.  Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. , 1999, Journal of neurophysiology.

[46]  W. Denk,et al.  Odour-evoked [Ca2+] transients in mitral cell dendrites of frog olfactory glomeruli. , 2001, The European journal of neuroscience.

[47]  C. H. Vanderwolf,et al.  Activity of identified cortically projecting and other basal forebrain neurones during large slow waves and cortical activation in anaesthetized rats , 1987, Brain Research.

[48]  B. Sakmann,et al.  A new cellular mechanism for coupling inputs arriving at different cortical layers , 1999, Nature.

[49]  Randolf Menzel,et al.  Odour perception in honeybees: coding information in glomerular patterns , 2000, Current Opinion in Neurobiology.

[50]  M. Ohkura,et al.  A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein , 2001, Nature Biotechnology.

[51]  Rafael Yuste,et al.  From form to function: calcium compartmentalization in dendritic spines , 2000, Nature Neuroscience.

[52]  R. Menzel,et al.  Representations of odours and odour mixtures visualized in the honeybee brain , 1997, Nature.

[53]  L. Cohen,et al.  Representation of Odorants by Receptor Neuron Input to the Mouse Olfactory Bulb , 2001, Neuron.

[54]  B R Masters,et al.  Multiphoton excitation fluorescence microscopy and spectroscopy of in vivo human skin. , 1997, Biophysical journal.

[55]  Rainer W Friedrich,et al.  Genetic Analysis of Vertebrate Sensory Hair Cell Mechanosensation: the Zebrafish Circler Mutants , 1998, Neuron.

[56]  V. Dürr,et al.  Two classes of visual motion sensitive interneurons differ in direction and velocity dependency of in vivo calcium dynamics. , 2001, Journal of neurobiology.

[57]  G. Feng,et al.  Imaging Neuronal Subsets in Transgenic Mice Expressing Multiple Spectral Variants of GFP , 2000, Neuron.

[58]  D. Kleinfeld,et al.  Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[59]  J Mertz,et al.  Odor-evoked calcium signals in dendrites of rat mitral cells. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[60]  Nicholas C. Spitzer,et al.  In vivo regulation of axon extension and pathfinding by growth-cone calcium transients , 1999, Nature.

[61]  Jerome Mertz,et al.  Two-photon microscopy in brain tissue: parameters influencing the imaging depth , 2001, Journal of Neuroscience Methods.

[62]  J. Fetcho,et al.  Labeling blastomeres with a calcium indicator: a non-invasive method of visualizing neuronal activity in zebrafish , 1996, Journal of Neuroscience Methods.

[63]  J. Fetcho,et al.  Imaging neuronal networks in behaving animals , 1997, Current Opinion in Neurobiology.

[64]  Yen-Hong Kao,et al.  Imaging the Functional Organization of Zebrafish Hindbrain Segments during Escape Behaviors , 1996, Neuron.

[65]  R. Kerr,et al.  Optical Imaging of Calcium Transients in Neurons and Pharyngeal Muscle of C. elegans , 2000, Neuron.

[66]  W. Denk,et al.  Two-photon excitation in functional biological imaging. , 1996, Journal of biomedical optics.

[67]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[68]  R. Tsien,et al.  Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin , 1997, Nature.

[69]  Scott E. Fraser,et al.  The neuronal naturalist: watching neurons in their native habitat , 2001, Nature Neuroscience.

[70]  J. Kao,et al.  Compartmentalized and Binary Behavior of Terminal Dendrites in Hippocampal Pyramidal Neurons , 2001, Science.

[71]  K. Oka,et al.  Dendritic calcium accumulation regulates wind sensitivity via short-term depression at cercal sensory-to-giant interneuron synapses in the cricket. , 2001, Journal of neurobiology.

[72]  D. Kleinfeld,et al.  Anatomical and functional imaging of neurons using 2-photon laser scanning microscopy , 1994, Journal of Neuroscience Methods.

[73]  B. Sakmann,et al.  Calcium action potentials restricted to distal apical dendrites of rat neocortical pyramidal neurons , 1997, The Journal of physiology.

[74]  D. Tank,et al.  In vivo dendritic calcium dynamics in deep-layer cortical pyramidal neurons , 1999, Nature Neuroscience.

[75]  K. Svoboda,et al.  Ca2+ signaling in dendritic spines , 2001, Current Opinion in Neurobiology.

[76]  Arthur Konnerth,et al.  Dendritic signal integration , 1997, Current Opinion in Neurobiology.

[77]  D. Tank,et al.  A Miniature Head-Mounted Two-Photon Microscope High-Resolution Brain Imaging in Freely Moving Animals , 2001, Neuron.

[78]  Michael J. O'Donovan,et al.  Real-time imaging of neurons retrogradely and anterogradely labelled with calcium-sensitive dyes , 1993, Journal of Neuroscience Methods.

[79]  B. Sakmann,et al.  Calcium electrogenesis in distal apical dendrites of layer 5 pyramidal cells at a critical frequency of back-propagating action potentials. , 1999, Proceedings of the National Academy of Sciences of the United States of America.