Weakly o-minimal structures and real closed fields

A linearly ordered structure is weakly o-minimal if all of its definable sets in one variable are the union of finitely many convex sets in the structure. Weakly o-minimal structures were introduced by Dickmann, and they arise in several contexts. We here prove several fundamental results about weakly o-minimal structures. Foremost among these, we show that every weakly o-minimal ordered field is real closed. We also develop a substantial theory of definable sets in weakly o-minimal structures, patterned, as much as possible, after that for o-minimal structures.

[1]  Paulo Ribenboim,et al.  Théorie des valuations , 1964 .

[2]  Peter J. Cameron,et al.  SOME TREELIKE OBJECTS , 1987 .

[3]  A. Wilkie TAME TOPOLOGY AND O-MINIMAL STRUCTURES (London Mathematical Society Lecture Note Series 248) By L OU VAN DEN D RIES : 180 pp., £24.95 (US$39.95, LMS Members' price £18.70), ISBN 0 521 59838 9 (Cambridge University Press, 1998). , 2000 .

[4]  A. Pillay,et al.  Definable sets in ordered structures , 1984 .

[5]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[6]  Franz-Viktor Kuhlmann Abelian Groups with Contractions II: Weak O-Minimality , 1995 .

[7]  L. van den Dries,et al.  Tame Topology and O-minimal Structures , 1998 .

[8]  A. Macintyre,et al.  Elimination of Quantifiers in Algebraic Structures , 1983 .

[9]  Michael C. Laskowski,et al.  Vapnik-Chervonenkis classes of definable sets , 1992 .

[10]  Dugald Macpherson,et al.  On Variants of o-Minimality , 1996, Ann. Pure Appl. Log..

[11]  Saunders MacLane,et al.  The universality of formal power series fields , 1939 .

[12]  Lou van den Dries T-Convexity and Tame Extensions II , 1997, J. Symb. Log..

[13]  Lou van den Dries,et al.  T-Convexity and Tame Extensions , 1995, J. Symb. Log..

[14]  Anand Pillay,et al.  Introduction to stability theory , 1983, Oxford logic guides.

[15]  Gregory L. Cherlin,et al.  Real closed rings II. model theory , 1983, Ann. Pure Appl. Log..

[16]  Deirdre Haskell,et al.  Cell Decompositions of C-Minimal Structures , 1994, Ann. Pure Appl. Log..

[17]  Franz-Viktor Kuhlmann Abelian groups with contractions I , 1994 .

[18]  H. Gaifman,et al.  Symbolic Logic , 1881, Nature.

[19]  L. Dries Remarks on Tarski's problem concerning (R, +, *, exp) , 1984 .

[20]  Tom M. Apostol,et al.  Book Reviews: Mathematical Analysis. A Modern Approach to Advanced Calculus , 1958 .

[21]  Max A. Dickmann Elimination of Quantifiers for Ordered Valuation Rings , 1987, J. Symb. Log..

[22]  Bruno Poizat,et al.  Paires de Structures O-Minimales , 1998, J. Symb. Log..