p53 induces transcriptional and translational programs to suppress cell proliferation and growth

[1]  M. Pende,et al.  Ribosomal protein S6 kinase activity controls the ribosome biogenesis transcriptional program , 2014, Oncogene.

[2]  R. Elkon,et al.  p53 induces transcriptional and translational programs to suppress cell proliferation and growth , 2013, Genome Biology.

[3]  Anna M. McGeachy,et al.  The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments , 2012, Nature Protocols.

[4]  P. Vogt,et al.  Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence , 2012, Cell cycle.

[5]  D. Sabatini,et al.  A unifying model for mTORC1-mediated regulation of mRNA translation , 2012, Nature.

[6]  Björn Schumacher,et al.  The p53 network: cellular and systemic DNA damage responses in aging and cancer. , 2012, Trends in genetics : TIG.

[7]  Nicholas T. Ingolia,et al.  The translational landscape of mTOR signalling steers cancer initiation and metastasis , 2012, Nature.

[8]  L. Attardi,et al.  Deconstructing p53 transcriptional networks in tumor suppression. , 2012, Trends in cell biology.

[9]  E. Dazert,et al.  mTOR signaling in disease. , 2011, Current opinion in cell biology.

[10]  A. Gudkov,et al.  Elimination of Proliferating Cells Unmasks the Shift from Senescence to Quiescence Caused by Rapamycin , 2011, PloS one.

[11]  C. Damgaard,et al.  Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. , 2011, Genes & development.

[12]  M. Blagosklonny Cell cycle arrest is not senescence , 2011, Aging.

[13]  D. Sabatini,et al.  mTOR: from growth signal integration to cancer, diabetes and ageing , 2010, Nature Reviews Molecular Cell Biology.

[14]  M. Blagosklonny,et al.  DNA damaging agents and p53 do not cause senescence in quiescent cells, while consecutive re-activation of mTOR is associated with conversion to senescence , 2010, Aging.

[15]  G. David,et al.  Ras-induced senescence and its physiological relevance in cancer. , 2010, Current cancer drug targets.

[16]  Ron Shamir,et al.  SPIKE: a database of highly curated human signaling pathways , 2010, Nucleic Acids Res..

[17]  Lorenzo Galluzzi,et al.  TP53 and MTOR crosstalk to regulate cellular senescence , 2010, Aging.

[18]  A. Gudkov,et al.  The choice between p53-induced senescence and quiescence is determined in part by the mTOR pathway , 2010, Aging.

[19]  A. Gudkov,et al.  Paradoxical suppression of cellular senescence by p53 , 2010, Proceedings of the National Academy of Sciences.

[20]  A. Gudkov,et al.  Cellular quiescence caused by the Mdm2 inhibitor Nutlin-3A , 2009, Cell cycle.

[21]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[22]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[23]  D. Peeper,et al.  Senescence-messaging secretome: SMS-ing cellular stress , 2009, Nature Reviews Cancer.

[24]  B. Manning,et al.  Common corruption of the mTOR signaling network in human tumors , 2008, Oncogene.

[25]  F. Amaldi,et al.  All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5'-terminal oligopyrimidine (TOP) mRNAs. , 2008, RNA.

[26]  R. Shamir,et al.  Transcription factor and microRNA motif discovery: the Amadeus platform and a compendium of metazoan target sets. , 2008, Genome research.

[27]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[28]  M. Bushell,et al.  TOPs and their regulation. , 2006, Biochemical Society transactions.

[29]  R. Bernards,et al.  A Genetic Screen Identifies PITX1 as a Suppressor of RAS Activity and Tumorigenicity , 2005, Cell.

[30]  F. Foufelle,et al.  SREBP transcription factors: master regulators of lipid homeostasis. , 2004, Biochimie.

[31]  L. Vassilev,et al.  In Vivo Activation of the p53 Pathway by Small-Molecule Antagonists of MDM2 , 2004, Science.

[32]  R. Agami,et al.  The tumor-suppressive functions of the human INK4A locus. , 2003, Cancer cell.

[33]  R. Bernards,et al.  A System for Stable Expression of Short Interfering RNAs in Mammalian Cells , 2002, Science.

[34]  O. Meyuhas Synthesis of the translational apparatus is regulated at the translational level. , 2000, European journal of biochemistry.

[35]  R. Pearson,et al.  Targeting PI3 kinase/AKT/mTOR signaling in cancer. , 2012, Critical reviews in oncogenesis.

[36]  Michael Karin,et al.  p53 Target Genes Sestrin1 and Sestrin2 Connect Genotoxic Stress and mTOR Signaling , 2009, Cell.

[37]  K. Lund,et al.  Production of compartmented cultures of rat sympathetic neurons , 2009 .