Anderson localization makes adiabatic quantum optimization fail
暂无分享,去创建一个
[1] Lszl Babai. Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004 , 2004, STOC.
[2] Sanjeev Arora,et al. Computational Complexity: A Modern Approach , 2009 .
[3] Martin Horvat,et al. Exponential complexity of an adiabatic algorithm for an NP-complete problem , 2006 .
[4] E. M.,et al. Statistical Mechanics , 2021, Manual for Theoretical Chemistry.
[5] October I. Physical Review Letters , 2022 .
[6] G. L. Hofacker,et al. J. E. Mayer und M. Goeppert‐Mayer: Statistical Mechanics, 2nd Ed., John Wiley & Sons Ltd., London, New York, Sydney, Toronto 1977. 491 Seiten, Preis: £ 17.50, $ 29.– , 1978 .
[7] Edward Farhi,et al. Quantum adiabatic algorithms, small gaps, and different paths , 2009, Quantum Inf. Comput..
[8] F. Krzakala,et al. Simple glass models and their quantum annealing. , 2008, Physical review letters.
[9] J. I. Latorre,et al. Simulation of many-qubit quantum computation with matrix product states (6 pages) , 2005, quant-ph/0503174.
[10] Guilhem Semerjian,et al. First-order transitions for random optimization problems in a transverse field , 2009 .
[11] Edward Farhi,et al. HOW TO MAKE THE QUANTUM ADIABATIC ALGORITHM FAIL , 2005 .
[12] Ben Reichardt,et al. The quantum adiabatic optimization algorithm and local minima , 2004, STOC '04.
[13] Physical Review , 1965, Nature.
[14] Rémi Monasson,et al. THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .
[15] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[16] Peter W. Shor,et al. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer , 1995, SIAM Rev..
[17] A. Young,et al. Size dependence of the minimum excitation gap in the quantum adiabatic algorithm. , 2008, Physical review letters.
[18] Seth Lloyd,et al. Adiabatic quantum computation is equivalent to standard quantum computation , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.
[19] V. Choi,et al. First-order quantum phase transition in adiabatic quantum computation , 2009, 0904.1387.
[20] M. Sipser,et al. Quantum Computation by Adiabatic Evolution , 2000, quant-ph/0001106.
[21] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[22] Umesh V. Vazirani,et al. How powerful is adiabatic quantum computation? , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.
[23] L. Zdeborová,et al. Phase diagram of the 1-in-3 satisfiability problem. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[24] T. Hogg. Adiabatic Quantum Computing for Random Satisfiability Problems , 2002, quant-ph/0206059.
[25] P. Anderson,et al. A selfconsistent theory of localization , 1973 .
[26] Akademii︠a︡ medit︠s︡inskikh nauk Sssr. Journal of physics , 1939 .
[27] P. W. Anderson,et al. Local moments and localized States. , 1978, Science.
[28] P. Anderson. Absence of Diffusion in Certain Random Lattices , 1958 .