Forest Fire Clustering for single-cell sequencing combines iterative label propagation with parallelized Monte Carlo simulations

[1]  Hongkai Ji,et al.  A statistical framework for differential pseudotime analysis with multiple single-cell RNA-seq samples , 2021, bioRxiv.

[2]  P. Kharchenko The triumphs and limitations of computational methods for scRNA-seq , 2021, Nature Methods.

[3]  A. Feinberg,et al.  Statistical mechanics meets single-cell biology , 2021, Nature Reviews Genetics.

[4]  Lucy L. Gao,et al.  Selective Inference for Hierarchical Clustering , 2020, Journal of the American Statistical Association.

[5]  Charlotte Soneson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data , 2020, F1000Research.

[6]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[7]  Ricardo J. Miragaia,et al.  scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation , 2019, Genome Biology.

[8]  Ronald R. Coifman,et al.  Visualizing structure and transitions in high-dimensional biological data , 2019, Nature Biotechnology.

[9]  Miguel Reyes,et al.  Simultaneous Profiling of Gene Expression and Chromatin Accessibility in Single Cells , 2019, Advanced biosystems.

[10]  Yiming Yang,et al.  Cumulus: a cloud-based data analysis framework for large-scale single-cell and single-nucleus RNA-seq , 2019, bioRxiv.

[11]  F. W. Townes,et al.  Quantile normalization of single-cell RNA-seq read counts without unique molecular identifiers , 2019, bioRxiv.

[12]  Hayden Kwok-Hay So,et al.  PARC: ultrafast and accurate clustering of phenotypic data of millions of single cells , 2019, bioRxiv.

[13]  M. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[14]  Johannes L. Schönberger,et al.  SciPy 1.0: fundamental algorithms for scientific computing in Python , 2019, Nature Methods.

[15]  Paul J. Hoffman,et al.  Comprehensive Integration of Single-Cell Data , 2018, Cell.

[16]  Xiaohui Chen,et al.  Diffusion K-means clustering on manifolds: provable exact recovery via semidefinite relaxations , 2019, Applied and Computational Harmonic Analysis.

[17]  M. Hemberg,et al.  Challenges in unsupervised clustering of single-cell RNA-seq data , 2019, Nature Reviews Genetics.

[18]  Vincent A. Traag,et al.  From Louvain to Leiden: guaranteeing well-connected communities , 2018, Scientific Reports.

[19]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection , 2018, J. Open Source Softw..

[20]  M. Robinson,et al.  A systematic performance evaluation of clustering methods for single-cell RNA-seq data. , 2018, F1000Research.

[21]  Laleh Haghverdi,et al.  Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors , 2018, Nature Biotechnology.

[22]  S. Orkin,et al.  Mapping the Mouse Cell Atlas by Microwell-Seq , 2018, Cell.

[23]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[24]  Fabian J Theis,et al.  SCANPY: large-scale single-cell gene expression data analysis , 2018, Genome Biology.

[25]  Chin-Teng Lin,et al.  A review of clustering techniques and developments , 2017, Neurocomputing.

[26]  Dustin G. Mixon,et al.  Monte Carlo approximation certificates for k-means clustering , 2017, 1710.00956.

[27]  H. Swerdlow,et al.  Large-scale simultaneous measurement of epitopes and transcriptomes in single cells , 2017, Nature Methods.

[28]  A. Oshlack,et al.  Splatter: simulation of single-cell RNA sequencing data , 2017, bioRxiv.

[29]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[30]  A. Bhardwaj,et al.  In situ click chemistry generation of cyclooxygenase-2 inhibitors , 2017, Nature Communications.

[31]  M. Schaub,et al.  SC3 - consensus clustering of single-cell RNA-Seq data , 2016, Nature Methods.

[32]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[33]  Fabian J Theis,et al.  Diffusion pseudotime robustly reconstructs lineage branching , 2016, Nature Methods.

[34]  I. Amit,et al.  Transcriptional Heterogeneity and Lineage Commitment in Myeloid Progenitors , 2015, Cell.

[35]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[36]  Guo-Cheng Yuan,et al.  Single-Cell Analysis in Cancer Genomics. , 2015, Trends in genetics : TIG.

[37]  S. Teichmann,et al.  Computational and analytical challenges in single-cell transcriptomics , 2015, Nature Reviews Genetics.

[38]  Fabian J Theis,et al.  Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells , 2015, Nature Biotechnology.

[39]  Pasquale De Meo,et al.  Generalized Louvain method for community detection in large networks , 2011, 2011 11th International Conference on Intelligent Systems Design and Applications.

[40]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[41]  Catalin C. Barbacioru,et al.  mRNA-Seq whole-transcriptome analysis of a single cell , 2009, Nature Methods.

[42]  J. Leskovec,et al.  Graph evolution: Densification and shrinking diameters , 2006, TKDD.

[43]  Mark J. van der Laan,et al.  A new algorithm for hybrid hierarchical clustering with visualization and the bootstrap , 2003 .

[44]  Chris H. Q. Ding,et al.  Cluster merging and splitting in hierarchical clustering algorithms , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[45]  Hans-Peter Kriegel,et al.  OPTICS: ordering points to identify the clustering structure , 1999, SIGMOD '99.

[46]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[47]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[48]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[49]  Douglas A. Reynolds,et al.  Gaussian Mixture Models , 2018, Encyclopedia of Biometrics.

[50]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .