Dynamic Engagement of Human Motion Detectors across Space–Time Coordinates

Motion detection is a fundamental property of the visual system. The gold standard for studying and understanding this function is the motion energy model. This computational tool relies on spatiotemporally selective filters that capture the change in spatial position over time afforded by moving objects. Although the filters are defined in space–time, their human counterparts have never been studied in their native spatiotemporal space but rather in the corresponding frequency domain. When this frequency description is back-projected to spatiotemporal description, not all characteristics of the underlying process are retained, leaving open the possibility that important properties of human motion detection may have remained unexplored. We derived descriptors of motion detectors in native space–time, and discovered a large unexpected dynamic structure involving a >2× change in detector amplitude over the first ∼100 ms. This property is not predicted by the energy model, generalizes across the visual field, and is robust to adaptation; however, it is silenced by surround inhibition and is contrast dependent. We account for all results by extending the motion energy model to incorporate a small network that supports feedforward spread of activation along the motion trajectory via a simple gain-control circuit.

[1]  Karen K. De Valois,et al.  Apparent speed of cycloidal motions , 2002 .

[2]  Ryota Kanai,et al.  Stopping the motion and sleuthing the flash-lag effect: spatial uncertainty is the key to perceptual mislocalization , 2004, Vision Research.

[3]  A. Borst,et al.  Seeing Things in Motion: Models, Circuits, and Mechanisms , 2011, Neuron.

[4]  Peter Neri,et al.  Global Properties of Natural Scenes Shape Local Properties of Human Edge Detectors , 2011, Front. Psychology.

[5]  D. M. MacKay Interactive Processes in Visual Perception , 2012 .

[6]  D. Burr Temporal summation of moving images by the human visual system , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[7]  Frans A. J. Verstraten,et al.  The motion aftereffect , 1998, Trends in Cognitive Sciences.

[8]  Smith-Kettlewell,et al.  BIOLOGICAL IMAGE MOTION PROCESSING : A REVIEW , 2012 .

[9]  Friedrich W. Fröhlich,et al.  Über die Messung der Empfindungszeit , 1924, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere.

[10]  Shinsuke Shimojo,et al.  Changing objects lead briefly flashed ones , 2000, Nature Neuroscience.

[11]  Karl R Gegenfurtner,et al.  Velocity tuned mechanisms in human motion processing , 1999, Vision Research.

[12]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[13]  M. Webster,et al.  Visual adaptation: Neural, psychological and computational aspects , 2007, Vision Research.

[14]  L. Maffei,et al.  The visual cortex as a spatial frequency analyser. , 1973, Vision research.

[15]  Bevil R. Conway,et al.  Contrast affects speed tuning, space-time slant, and receptive-field organization of simple cells in macaque V1. , 2007, Journal of neurophysiology.

[16]  Peter Neri,et al.  Temporal dynamics of directional selectivity in human vision. , 2008, Journal of vision.

[17]  Klein,et al.  Nonlinear directionally selective subunits in complex cells of cat striate cortex. , 1987, Journal of neurophysiology.

[18]  K. Nakayama,et al.  Sustained and transient components of focal visual attention , 1989, Vision Research.

[19]  Amir C. Akhavan,et al.  Parametric Population Representation of Retinal Location: Neuronal Interaction Dynamics in Cat Primary Visual Cortex , 1999, The Journal of Neuroscience.

[20]  David Ferster,et al.  Functional Coupling from Simple to Complex Cells in the Visually Driven Cortical Circuit , 2013, The Journal of Neuroscience.

[21]  R. Desimone,et al.  Columnar organization of directionally selective cells in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[22]  Richard F Murray,et al.  Optimal methods for calculating classification images: weighted sums. , 2002, Journal of vision.

[23]  H. Nothdurft,et al.  Cueing and pop-out , 1999, Vision Research.

[24]  Randolph Blake,et al.  Fine Temporal Properties of Center–Surround Interactions in Motion Revealed by Reverse Correlation , 2006, The Journal of Neuroscience.

[25]  R. Nijhawan,et al.  Neural delays, visual motion and the flash-lag effect , 2002, Trends in Cognitive Sciences.

[26]  Endel Põder,et al.  Change in feature space is not necessary for the flash-lag effect , 2001, Vision Research.

[27]  C. W. G Clifford,et al.  Fundamental mechanisms of visual motion detection: models, cells and functions , 2002, Progress in Neurobiology.

[28]  S. Baldassi,et al.  Spatio-temporal templates of transient attention revealed by classification images , 2012, Vision Research.

[29]  A. Mikami Spatiotemporal characteristics of direction-selective neurons in the middle temporal visual area of the macaque monkeys , 2004, Experimental Brain Research.

[30]  S. McKee,et al.  Sequential recruitment in the discrimination of velocity. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[31]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[32]  A. Kohn Visual adaptation: physiology, mechanisms, and functional benefits. , 2007, Journal of neurophysiology.

[33]  David J. Heeger,et al.  Spatiotemporal mechanisms for detecting and identifying image features in human vision , 2002, Nature Neuroscience.

[34]  Marc Pomplun,et al.  Distorted object perception following whole-field adaptation of saccadic eye movements. , 2011, Journal of vision.

[35]  Nestor Caticha,et al.  Computational neurobiology of the flash-lag effect , 2005, Vision Research.

[36]  W. Reichardt,et al.  Autocorrelation, a principle for the evaluation of sensory information by the central nervous system , 1961 .

[37]  Richard F Murray,et al.  Classification images: A review. , 2011, Journal of vision.

[38]  Randolph Blake,et al.  Perceptual consequences of centre–surround antagonism in visual motion processing , 2003, Nature.

[39]  J. van Santen,et al.  Elaborated Reichardt detectors. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[40]  Larry N. Thibos,et al.  Validation of a clinical aberrometer , 2002 .

[41]  M. Lappe,et al.  Neuronal latencies and the position of moving objects , 2001, Trends in Neurosciences.

[42]  A. Ahumada Perceptual Classification Images from Vernier Acuity Masked by Noise , 1996 .

[43]  Christopher W. Tyler,et al.  One Eye is Usually Centred Horizontally (and near the Golden Section Vertically) in Portraits over the Past 500 Years , 1997 .

[44]  A. Ahumada Classification image weights and internal noise level estimation. , 2002, Journal of vision.

[45]  David J. Heeger,et al.  Model of visual motion sensing , 1994 .

[46]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[47]  Peter Földiák,et al.  Adaptation and decorrelation in the cortex , 1989 .

[48]  T. Poggio,et al.  Visual hyperacuity: spatiotemporal interpolation in human vision , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[49]  S. Watamaniuk High-Level Motion Processing: Computational, Neurobiological, and Psychophysical Perspectives , 1999 .

[50]  Bevil R. Conway,et al.  Spatiotemporal Structure of Nonlinear Subunits in Macaque Visual Cortex , 2006, The Journal of Neuroscience.

[51]  Peter Neri,et al.  Attentional control of sensory tuning in human visual perception. , 2012, Journal of neurophysiology.

[52]  Shinichi Kita,et al.  Our own faces: perceiving fluctuating asymmetry in the highly familiar objects , 2010 .

[53]  Peter Neri,et al.  Evidence for joint encoding of motion and disparity in human visual perception. , 2008, Journal of neurophysiology.

[54]  Preeti Verghese,et al.  PII: S0042-6989(98)00033-9 , 1998 .

[55]  P. Neri Stochastic characterization of small-scale algorithms for human sensory processing. , 2010, Chaos.

[56]  Nicholas J. Priebe,et al.  Tuning for Spatiotemporal Frequency and Speed in Directionally Selective Neurons of Macaque Striate Cortex , 2006, The Journal of Neuroscience.

[57]  Oliver Braddick Visual System: Mapping of motion perception , 1986, Nature.

[58]  Peter Neri,et al.  Surround motion silences signals from same-direction motion. , 2009, Journal of neurophysiology.

[59]  Lucia M Vaina,et al.  First-order and second-order motion: neurological evidence for neuroanatomically distinct systems. , 2004, Progress in brain research.

[60]  D. Burr,et al.  The “Flash-Lag” Effect Occurs in Audition and Cross-Modally , 2003, Current Biology.

[61]  Z L Lu,et al.  Three-systems theory of human visual motion perception: review and update. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[62]  Ko Sakai,et al.  Spatial attention in early vision for the perception of border ownership. , 2008, Journal of vision.

[63]  S. Klein,et al.  Evidence for an Attentional Component of the Perceptual Misalignment between Moving and Flashing Stimuli , 2002, Perception.

[64]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[65]  Y. Dan,et al.  Asymmetry in Visual Cortical Circuits Underlying Motion-Induced Perceptual Mislocalization , 2004, The Journal of Neuroscience.

[66]  D. Heeger,et al.  Motion Opponency in Visual Cortex , 1999, The Journal of Neuroscience.

[67]  Colin W G Clifford,et al.  Rapid serial visual presentation of motion: short-term facilitation and long-term suppression. , 2011, Journal of vision.

[68]  Terrence J Sejnowski,et al.  Motion signals bias localization judgments: a unified explanation for the flash-lag, flash-drag, flash-jump, and Frohlich illusions. , 2007, Journal of vision.

[69]  David Whitney,et al.  Second-order motion shifts perceived position , 2006, Vision Research.

[70]  Mazyar Fallah,et al.  A Motion-Dependent Distortion of Retinotopy in Area V4 , 2006, Neuron.

[71]  Michael J. Berry,et al.  Anticipation of moving stimuli by the retina , 1999, Nature.

[72]  David C. Burr,et al.  Receptive field properties of human motion detector units inferred from spatial frequency masking , 1989, Vision Research.

[73]  Dario L. Ringach,et al.  Reverse correlation in neurophysiology , 2004, Cogn. Sci..

[74]  Andrew B. Watson,et al.  A look at motion in the frequency domain , 1983 .

[75]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .