Distinct germline genetic susceptibility profiles identified for common non-Hodgkin lymphoma subtypes

J. Cerhan | G. Colditz | E. Ziv | N. Camp | C. Vachon | E. Riboli | N. Rothman | S. Chanock | P. Vineis | H. Adami | N. Chatterjee | T. Habermann | G. Giles | C. Haiman | L. Cannon-Albright | M. Southey | L. Kolonel | P. Kraft | T. Holford | Xifeng Wu | K. Offit | D. Conti | A. Brooks-Wilson | J. Spinelli | D. Cox | M. Yeager | Zhaoming Wang | J. Fraumeni | D. Albanes | S. Weinstein | C. Skibola | E. Weiderpass | Charles C. Chung | L. Burdett | T. Shanafelt | S. Berndt | P. Brennan | R. Milne | Y. Ye | S. Slager | W. R. Diver | R. Jackson | J. Vijai | K. North | P. Boffetta | L. Forétova | H. Tilly | C. Breeze | E. Holly | D. J. Van Den Berg | S. Glaser | J. Sampson | Q. Lan | A. Dogan | M. Melbye | A. van den Berg | M. Liebow | P. Bracci | A. Zeleniuch‐Jacquotte | Martyn T. Smith | K. Onel | P. Bhatti | R. Severson | K. Curtin | C. Haioun | A. Staines | S. Ansell | J. Riby | Lei Song | P. Cocco | C. Edlund | K. Rand | I. De Vivo | E. Brown | H. Hjalgrim | K. Tkachuk | L. Morton | Sophia S. Wang | B. Glimelius | Dalin Li | R. Travis | N. Becker | L. Miligi | Amy Hutchinson | R. Kaaks | W. Cozen | B. Birmann | D. Sborov | B. Bassig | M. Purdue | G. Weiner | L. Conde | Yawei Zhang | Y. Benavente | C. Thompson | A. Novak | Charles Lawrence | E. Roman | R. Jarrett | A. Lake | A. Kricker | J. Turner | A. Nieters | A. Monnereau | Lauren R. Teras | K. E. Smedby | C. Vajdic | M. Glenn | B. Link | L. Tinker | J. Clavel | H. Ghesquières | J. Hofmann | D. Casabonne | Jian Gu | James Mckay | N. W. Doo | K. Song | B. Chiu | H. Sutherland | D. Stephens | Charles E. Lawrence | E. Kane | G. Kleinstern | K. Yu | C. Besson | R. Vermeulen | Rebecca Montalvan | Yawei Zhang | Tongzhang Zheng | M. Maynadié | Corrado Magnani | E. T. Chang | A. Gabbas | Kenneth C. Anderson | Thierry Molina | Lei Song | Yinfei Kong | Gilles A Salles | Zhaoming Wang | Joshua Arias | Charles C Chung | Aalin Izhar | Dalin Li | Alexandra Smith | Sophia S Wang | Xifeng Wu | Alexandra Smith | T. Zheng | R. Jackson | K. Anderson | L. Foretova | G. Salles | W. Diver | Alexandra G. Smith | J. Mckay | L. Song | A. Hutchinson | Annette Lake | P. Brennan | E. Riboli | Y. Ye | E. Brown

[1]  Alex P. Reynolds,et al.  Integrative analysis of 3604 GWAS reveals multiple novel cell type-specific regulatory associations , 2022, Genome biology.

[2]  Sina A. Gharib,et al.  Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression , 2021, Nature Genetics.

[3]  J. Cerhan,et al.  Inherited variants at 3q13.33 and 3p24.1 are associated with risk of diffuse large B-cell lymphoma and implicate immune pathways. , 2019, Human molecular genetics.

[4]  R. Houlston,et al.  Analysis of 153,115 patients with hematological malignancies refines the spectrum of familial risk. , 2019, Blood.

[5]  M. Amiot,et al.  BCL2-Family Dysregulation in B-Cell Malignancies: From Gene Expression Regulation to a Targeted Therapy Biomarker , 2019, Front. Oncol..

[6]  M. Nöthen,et al.  Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology , 2018, Blood Cancer Journal.

[7]  H. Drexler,et al.  NKL homeobox gene activities in B-cell development and lymphomas , 2018, PloS one.

[8]  Paolo Vineis,et al.  Two high-risk susceptibility loci at 6p25.3 and 14q32.13 for Waldenström macroglobulinemia , 2018, Nature Communications.

[9]  A. Jemal,et al.  Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries , 2018, CA: a cancer journal for clinicians.

[10]  P. Gaffney,et al.  Genetic fine mapping of systemic lupus erythematosus MHC associations in Europeans and African Americans , 2018, Human molecular genetics.

[11]  Ashley P Ng,et al.  Hhex induces promyelocyte self-renewal and cooperates with growth factor independence to cause myeloid leukemia in mice. , 2018, Blood advances.

[12]  Paolo Vineis,et al.  Genome-wide association analysis implicates dysregulation of immunity genes in chronic lymphocytic leukaemia , 2017, Nature Communications.

[13]  A. Pettitt,et al.  Genome-wide association analysis of chronic lymphocytic leukaemia, Hodgkin lymphoma and multiple myeloma identifies pleiotropic risk loci , 2017, Scientific Reports.

[14]  J. Witte,et al.  A Meta-analysis of Multiple Myeloma Risk Regions in African and European Ancestry Populations Identifies Putatively Functional Loci , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[15]  D. Gudbjartsson,et al.  Genome-wide association study identifies multiple susceptibility loci for multiple myeloma , 2016, Nature Communications.

[16]  R. Advani,et al.  The World Health Organization Classification of Lymphoid Neoplasms , 2013 .

[17]  Paolo Vineis,et al.  Meta-analysis of genome-wide association studies discovers multiple loci for chronic lymphocytic leukemia , 2016, Nature Communications.

[18]  Jian Su,et al.  Analysis of Heritability and Shared Heritability Based on Genome-Wide Association Studies for Thirteen Cancer Types. , 2015, Journal of the National Cancer Institute.

[19]  P. Gregersen,et al.  Genome-wide association study identifies HLA 8.1 ancestral haplotype alleles as major genetic risk factors for myositis phenotypes , 2015, Genes and Immunity.

[20]  R. Fulton,et al.  Inherited coding variants at the CDKN2A locus influence susceptibility to acute lymphoblastic leukaemia in children , 2015, Nature Communications.

[21]  W. Shi,et al.  A crucial role for the homeodomain transcription factor Hhex in lymphopoiesis. , 2015, Blood.

[22]  J. Hirschhorn,et al.  Biological interpretation of genome-wide association studies using predicted gene functions , 2015, Nature Communications.

[23]  Paolo Vineis,et al.  A genome-wide association study of marginal zone lymphoma shows association to the HLA region , 2015, Nature Communications.

[24]  Jian Gu,et al.  Genome-wide Association Study Identifies Five Susceptibility Loci for Follicular Lymphoma outside the HLA Region , 2022 .

[25]  E. Engels,et al.  Risk of non-Hodgkin lymphoma subtypes in HIV-infected people during the HAART era: a population-based study , 2014, AIDS.

[26]  Paolo Vineis,et al.  Genome-wide association study identifies multiple susceptibility loci for diffuse large B-cell lymphoma , 2014, Nature Genetics.

[27]  D. Weisenburger,et al.  Etiologic heterogeneity among non-Hodgkin lymphoma subtypes: the InterLymph Non-Hodgkin Lymphoma Subtypes Project. , 2014, Journal of the National Cancer Institute. Monographs.

[28]  P Boffetta,et al.  A Meta-Analysis of Hodgkin Lymphoma Reveals 19p13.3 TCF3 as a Novel Susceptibility Locus , 2013, Nature Communications.

[29]  Aneela Majid,et al.  A genome-wide association study identifies multiple susceptibility loci for chronic lymphocytic leukemia , 2013, Nature Genetics.

[30]  D. V. Berg,et al.  Genome-wide association study of endometrial cancer in E2C2 , 2013, Human Genetics.

[31]  C. Friedenreich,et al.  Genome-wide association study of endometrial cancer in E2C2 , 2013, Human Genetics.

[32]  Pedro G. Ferreira,et al.  Transcriptome and genome sequencing uncovers functional variation in humans , 2013, Nature.

[33]  Thomas W. Mühleisen,et al.  Common variation at 3q26.2, 6p21.33, 17p11.2 and 22q13.1 influences multiple myeloma risk , 2013, Nature Genetics.

[34]  S. Chew,et al.  Genome-wide association study of B cell non-Hodgkin lymphoma identifies 3q27 as a susceptibility locus in the Chinese population , 2013, Nature Genetics.

[35]  Paolo Vineis,et al.  Genome-wide Association Study Identifies Multiple Risk Loci for Chronic Lymphocytic Leukemia , 2013, Nature Genetics.

[36]  Jane E. Carpenter,et al.  A meta-analysis of genome-wide association studies of breast cancer identifies two novel susceptibility loci at 6q14 and 20q11. , 2012, Human molecular genetics.

[37]  Sang Hong Lee,et al.  Estimation of pleiotropy between complex diseases using single-nucleotide polymorphism-derived genomic relationships and restricted maximum likelihood , 2012, Bioinform..

[38]  Eran Halperin,et al.  Common variation at 6p21.31 (BAK1) influences the risk of chronic lymphocytic leukemia. , 2012, Blood.

[39]  Nilanjan Chatterjee,et al.  A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. , 2012, American journal of human genetics.

[40]  Y. Kamatani,et al.  Genome-wide association study of classical Hodgkin lymphoma and Epstein-Barr virus status-defined subgroups. , 2012, Journal of the National Cancer Institute.

[41]  M. Thun,et al.  Genome-wide association study identifies new prostate cancer susceptibility loci. , 2011, Human molecular genetics.

[42]  Peter Boyle,et al.  GWAS of Follicular Lymphoma Reveals Allelic Heterogeneity at 6p21.32 and Suggests Shared Genetic Susceptibility with Diffuse Large B-cell Lymphoma , 2011, PLoS genetics.

[43]  Celine M Vachon,et al.  Genome-wide association study identifies a novel susceptibility locus at 6p21.3 among familial CLL. , 2011, Blood.

[44]  Adele Seniori Costantini,et al.  InterLymph hierarchical classification of lymphoid neoplasms for epidemiologic research based on the WHO classification (2008): update and future directions. , 2010, Blood.

[45]  A. Ashworth,et al.  A genome-wide association study of Hodgkin Lymphoma identifies new susceptibility loci at 2p16.1 (REL), 8q24.21, and 10p14 (GATA3) , 2010, Nature Genetics.

[46]  J. Gasson,et al.  The homeobox gene Hhex regulates the earliest stages of definitive hematopoiesis. , 2010, Blood.

[47]  Kevin M. Brown,et al.  Genome-wide association study of follicular lymphoma identifies a risk locus at 6p21.32 , 2010, Nature Genetics.

[48]  P. Visscher,et al.  Common SNPs explain a large proportion of heritability for human height , 2011 .

[49]  James Allan,et al.  Variation in CDKN2A at 9p21.3 influences childhood acute lymphoblastic leukemia risk , 2010, Nature Genetics.

[50]  A. Ashworth,et al.  IRF4 polymorphism rs872071 and risk of Hodgkin lymphoma , 2010, British journal of haematology.

[51]  E. Campo,et al.  Common variants at 2q37.3, 8q24.21, 15q21.3, and 16q24.1 influence chronic lymphocytic leukemia risk , 2010, Nature Genetics.

[52]  Eran Halperin,et al.  Genetic variants at 6p21.33 are associated with susceptibility to follicular lymphoma , 2009, Nature Genetics.

[53]  Guy Pratt,et al.  A genome-wide association study identifies six susceptibility loci for chronic lymphocytic leukemia , 2008, Nature Genetics.

[54]  D. Weisenburger,et al.  Family history of hematopoietic malignancies and risk of non-Hodgkin lymphoma (NHL): a pooled analysis of 10 211 cases and 11 905 controls from the International Lymphoma Epidemiology Consortium (InterLymph). , 2006, Blood.

[55]  S. Hwang,et al.  Identification of gene expression signatures for molecular classification in human leukemia cells. , 2006, International journal of oncology.

[56]  V. Singh,et al.  Distinct Role of CD80 and CD86 in the Regulation of the Activation of B Cell and B Cell Lymphoma* , 2002, The Journal of Biological Chemistry.

[57]  C. Pratt,et al.  St. Jude Children's Research Hospital. , 1997, Pediatric hematology and oncology.