A block-iterative surrogate constraint splitting method for quadratic signal recovery

A block-iterative parallel decomposition method is proposed to solve general quadratic signal recovery problems under convex constraints. The proposed method proceeds by local linearizations of blocks of constraints, and it is therefore not sensitive to their analytical complexity. In addition, it naturally lends itself to implementation on parallel computing architectures due to its flexible block-iterative structure. Comparisons with existing methods are carried out, and the case of inconsistent constraints is also discussed. Numerical results are presented.

[1]  Tsuneo Saito,et al.  Sinogram recovery with the method of convex projections for limited-data reconstruction in computed tomography , 1991 .

[2]  Y. Censor,et al.  Parallel Optimization: Theory, Algorithms, and Applications , 1997 .

[3]  Bertolt Eicke Iteration methods for convexly constrained ill-posed problems in hilbert space , 1992 .

[4]  D. Youla,et al.  Image Restoration by the Method of Convex Projections: Part 1ߞTheory , 1982, IEEE Transactions on Medical Imaging.

[5]  Y. Censor Finite series-expansion reconstruction methods , 1983, Proceedings of the IEEE.

[6]  K. Kiwiel Monotone gram matrices and deepest surrogate inequalities in accelerated relaxation methods for convex feasibility problems , 1997 .

[7]  F. Deutsch Best approximation in inner product spaces , 2001 .

[8]  Ashutosh Sabharwal,et al.  Convexly constrained linear inverse problems: iterative least-squares and regularization , 1998, IEEE Trans. Signal Process..

[9]  Patrick L. Combettes,et al.  An adaptive level set method for nondifferentiable constrained image recovery , 2002, IEEE Trans. Image Process..

[10]  H. Trussell,et al.  The feasible solution in signal restoration , 1984 .

[11]  R. Dykstra An Algorithm for Restricted Least Squares Regression , 1983 .

[12]  Heinz H. Bauschke,et al.  A Weak-to-Strong Convergence Principle for Fejé-Monotone Methods in Hilbert Spaces , 2001, Math. Oper. Res..

[13]  S. Twomey The application of numerical filtering to the solution of integral equations encountered in indirect sensing measurements , 1965 .

[14]  P. L. Combettes Construction d'un point fixe commun à une famille de contractions fermes , 1995 .

[15]  Patrick L. Combettes,et al.  The use of noise properties in set theoretic estimation , 1991, IEEE Trans. Signal Process..

[16]  Michael K. Ng,et al.  Comments on "Least squares restoration of multichannel images" , 2001, IEEE Trans. Signal Process..

[17]  D. Titterington General structure of regularization procedures in image reconstruction , 1985 .

[18]  Guy Pierra,et al.  Eclatement de Contraintes en Parallèle pour la Minimisation d'une Forme Quadratique , 1975, Optimization Techniques.

[19]  Heinz H. Bauschke,et al.  On Projection Algorithms for Solving Convex Feasibility Problems , 1996, SIAM Rev..

[20]  Laurent Schwartz,et al.  Analyse : Topologie générale et analyse fonctionnelle , 1993 .

[21]  Patrick L. Combettes,et al.  Signal recovery by best feasible approximation , 1993, IEEE Trans. Image Process..

[22]  Alfredo N. Iusem,et al.  A row-action method for convex programming , 1994, Math. Program..

[23]  Guy Pierra,et al.  Decomposition through formalization in a product space , 1984, Math. Program..

[24]  Patrick L. Combettes,et al.  Inconsistent signal feasibility problems: least-squares solutions in a product space , 1994, IEEE Trans. Signal Process..

[25]  H. Stark,et al.  Tomographic image reconstruction using the theory of convex projections. , 1988, IEEE transactions on medical imaging.

[26]  Francisco Javier González-Castaño,et al.  Fast image recovery using dynamic load balancing in parallel architectures, by means of incomplete projections , 2001, IEEE Trans. Image Process..

[27]  R. Mathar,et al.  A cyclic projection algorithm via duality , 1989 .

[28]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[29]  M. Ibrahim Sezan,et al.  Prototype image constraints for set-theoretic image restoration , 1991, IEEE Trans. Signal Process..

[30]  Richard M. Leahy,et al.  An optimal technique for constraint-based image restoration and reconstruction , 1986, IEEE Trans. Acoust. Speech Signal Process..

[31]  Aggelos K. Katsaggelos A multiple input image restoration approach , 1990, J. Vis. Commun. Image Represent..

[32]  Heinz H. Bauschke,et al.  Dykstra's Alternating Projection Algorithm for Two Sets , 1994 .

[33]  P. L. Combettes,et al.  The Convex Feasibility Problem in Image Recovery , 1996 .

[34]  B. Halpern Fixed points of nonexpanding maps , 1967 .

[35]  Simeon Reich,et al.  A limit theorem for projections , 1983 .

[36]  B. R. Hunt,et al.  The Application of Constrained Least Squares Estimation to Image Restoration by Digital Computer , 1973, IEEE Transactions on Computers.

[37]  Gabor T. Herman,et al.  Quadratic optimization for image reconstruction, II , 1976 .

[38]  R. Dykstra,et al.  A Method for Finding Projections onto the Intersection of Convex Sets in Hilbert Spaces , 1986 .

[39]  Y. Censor,et al.  Parallel Optimization:theory , 1997 .

[40]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[41]  A. Levy A fast quadratic programming algorithm for positive signal restoration , 1983 .

[42]  Patrick L. Combettes,et al.  Strong Convergence of Block-Iterative Outer Approximation Methods for Convex Optimization , 2000, SIAM J. Control. Optim..

[43]  Francisco Javier González-Castaño,et al.  Incomplete projection algorithms for solving the convex feasibility problem , 2004, Numerical Algorithms.

[44]  Billy E. Rhoades Quadratic optimization of fixed points for a family of nonexpansive mappings in Hilbert space , 2004 .

[45]  Michael Elad,et al.  Restoration of a single superresolution image from several blurred, noisy, and undersampled measured images , 1997, IEEE Trans. Image Process..

[46]  Patrick L. Combettes,et al.  Hard-constrained inconsistent signal feasibility problems , 1999, IEEE Trans. Signal Process..

[47]  Patrick L. Combettes,et al.  Convex set theoretic image recovery by extrapolated iterations of parallel subgradient projections , 1997, IEEE Trans. Image Process..

[48]  Patrick L. Combettes,et al.  Combining statistical information in set theoretic estimation , 1996, IEEE Signal Processing Letters.

[49]  Isao Yamada,et al.  An efficient robust adaptive filtering algorithm based on parallel subgradient projection techniques , 2002, IEEE Trans. Signal Process..

[50]  K. S. Arun,et al.  A quadratically convergent algorithm for convex-set constrained signal recovery , 1996, IEEE Trans. Signal Process..

[51]  Alvaro R. De Pierro,et al.  On the convergence of Han's method for convex programming with quadratic objective , 1991, Math. Program..

[52]  B. Hunt The inverse problem of radiography , 1970 .