Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones
暂无分享,去创建一个
[1] D. Rose. Triangulated graphs and the elimination process , 1970 .
[2] A. George. Nested Dissection of a Regular Finite Element Mesh , 1973 .
[3] Robert E. Tarjan,et al. Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..
[4] N. Wermuth. Linear Recursive Equations, Covariance Selection, and Path Analysis , 1980 .
[5] Robert E. Tarjan,et al. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..
[6] Charles R. Johnson,et al. Positive definite completions of partial Hermitian matrices , 1984 .
[7] Aharon Ben-Tal,et al. Lectures on modern convex optimization , 1987 .
[8] Charles R. Johnson,et al. Determinantal formulae for matrix completions associated with chordal graphs , 1989 .
[9] B. Peyton,et al. An Introduction to Chordal Graphs and Clique Trees , 1993 .
[10] Sanjay Mehrotra,et al. Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..
[11] A. George,et al. Graph theory and sparse matrix computation , 1993 .
[12] Shinji Hara,et al. Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .
[13] Peter R. Jones,et al. Implementation and Evaluation , 1995 .
[14] Robert J. Vanderbei,et al. An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..
[15] Patrick R. Amestoy,et al. An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..
[16] Michael J. Todd,et al. Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..
[17] Stephen J. Wright. Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.
[18] Renato D. C. Monteiro,et al. Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..
[19] Masakazu Kojima,et al. Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..
[20] Laurent El Ghaoui,et al. Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..
[21] Shinji Hara,et al. Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..
[22] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[23] Michael J. Todd,et al. Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..
[24] Renato D. C. Monteiro,et al. Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..
[25] Brian Borchers,et al. SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .
[26] Michael I. Jordan. Graphical Models , 2003 .
[27] Kim-Chuan Toh,et al. On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..
[28] B. Borchers. CSDP, A C library for semidefinite programming , 1999 .
[29] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[30] Arkadi Nemirovski,et al. Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.
[31] Kazuo Murota,et al. Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..
[32] James Renegar,et al. A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.
[33] Jos F. Sturm,et al. Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..
[34] Raphael A. Hauser. Self-Scaled Barrier Functions on Symmetric Cones and Their Classification , 2002, Found. Comput. Math..
[35] Jos F. Sturm,et al. Avoiding numerical cancellation in the interior point method for solving semidefinite programs , 2003, Math. Program..
[36] Donald Goldfarb,et al. Robust convex quadratically constrained programs , 2003, Math. Program..
[37] Katsuki Fujisawa,et al. Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..
[38] Masakazu Kojima,et al. Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..
[39] Donald Goldfarb,et al. Second-order cone programming , 2003, Math. Program..
[40] Kim-Chuan Toh,et al. Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..
[41] Samuel Burer,et al. Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices , 2003, SIAM J. Optim..
[42] Stephen A. Vavasis,et al. A Fully Sparse Implementation of a Primal-Dual Interior-Point Potential Reduction Method for Semidefinite Programming , 2004, ArXiv.
[43] J. Lofberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).
[44] Yinyu Ye,et al. DSDP5: Software for Semidefinite Programming , 2005 .
[45] Masakazu Muramatsu,et al. Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .
[46] Stephen P. Boyd,et al. Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.
[47] Y. Nesterov. Towards Nonsymmetric Conic Optimization , 2006 .
[48] Y. Nesterov. Nonsymmetric Potential-Reduction Methods for General Cones , 2006 .
[49] Martin Berggren,et al. Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.
[50] M. Kojima,et al. Correlative Sparsity in Primal-Dual Interior-Point Methods for LP, SDP, and SOCP , 2008 .
[51] Vwani P. Roychowdhury,et al. Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..
[52] YANQING CHEN,et al. Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .
[53] Stephen P. Boyd,et al. Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.
[54] Timothy A. Davis,et al. The university of Florida sparse matrix collection , 2011, TOMS.
[55] Yurii Nesterov,et al. Towards non-symmetric conic optimization , 2012, Optim. Methods Softw..