Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones

We describe an implementation of nonsymmetric interior-point methods for linear cone programs defined by two types of matrix cones: the cone of positive semidefinite matrices with a given chordal sparsity pattern and its dual cone, the cone of chordal sparse matrices that have a positive semidefinite completion. The implementation takes advantage of fast recursive algorithms for evaluating the function values and derivatives of the logarithmic barrier functions for these cones. We present experimental results of two implementations, one of which is based on an augmented system approach, and a comparison with publicly available interior-point solvers for semidefinite programming.

[1]  D. Rose Triangulated graphs and the elimination process , 1970 .

[2]  A. George Nested Dissection of a Regular Finite Element Mesh , 1973 .

[3]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..

[4]  N. Wermuth Linear Recursive Equations, Covariance Selection, and Path Analysis , 1980 .

[5]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[6]  Charles R. Johnson,et al.  Positive definite completions of partial Hermitian matrices , 1984 .

[7]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[8]  Charles R. Johnson,et al.  Determinantal formulae for matrix completions associated with chordal graphs , 1989 .

[9]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[10]  Sanjay Mehrotra,et al.  Solving symmetric indefinite systems in an interior-point method for linear programming , 1993, Math. Program..

[11]  A. George,et al.  Graph theory and sparse matrix computation , 1993 .

[12]  Shinji Hara,et al.  Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .

[13]  Peter R. Jones,et al.  Implementation and Evaluation , 1995 .

[14]  Robert J. Vanderbei,et al.  An Interior-Point Method for Semidefinite Programming , 1996, SIAM J. Optim..

[15]  Patrick R. Amestoy,et al.  An Approximate Minimum Degree Ordering Algorithm , 1996, SIAM J. Matrix Anal. Appl..

[16]  Michael J. Todd,et al.  Self-Scaled Barriers and Interior-Point Methods for Convex Programming , 1997, Math. Oper. Res..

[17]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[18]  Renato D. C. Monteiro,et al.  Primal-Dual Path-Following Algorithms for Semidefinite Programming , 1997, SIAM J. Optim..

[19]  Masakazu Kojima,et al.  Exploiting sparsity in primal-dual interior-point methods for semidefinite programming , 1997, Math. Program..

[20]  Laurent El Ghaoui,et al.  Robust Solutions to Least-Squares Problems with Uncertain Data , 1997, SIAM J. Matrix Anal. Appl..

[21]  Shinji Hara,et al.  Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices , 1997, SIAM J. Optim..

[22]  Michael L. Overton,et al.  Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..

[23]  Michael J. Todd,et al.  Primal-Dual Interior-Point Methods for Self-Scaled Cones , 1998, SIAM J. Optim..

[24]  Renato D. C. Monteiro,et al.  Polynomial Convergence of Primal-Dual Algorithms for Semidefinite Programming Based on the Monteiro and Zhang Family of Directions , 1998, SIAM J. Optim..

[25]  Brian Borchers,et al.  SDPLIB 1.1, A Library of Semidefinite Programming Test Problems , 1998 .

[26]  Michael I. Jordan Graphical Models , 2003 .

[27]  Kim-Chuan Toh,et al.  On the Nesterov-Todd Direction in Semidefinite Programming , 1998, SIAM J. Optim..

[28]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[29]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[30]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[31]  Kazuo Murota,et al.  Exploiting Sparsity in Semidefinite Programming via Matrix Completion I: General Framework , 2000, SIAM J. Optim..

[32]  James Renegar,et al.  A mathematical view of interior-point methods in convex optimization , 2001, MPS-SIAM series on optimization.

[33]  Jos F. Sturm,et al.  Implementation of interior point methods for mixed semidefinite and second order cone optimization problems , 2002, Optim. Methods Softw..

[34]  Raphael A. Hauser Self-Scaled Barrier Functions on Symmetric Cones and Their Classification , 2002, Found. Comput. Math..

[35]  Jos F. Sturm,et al.  Avoiding numerical cancellation in the interior point method for solving semidefinite programs , 2003, Math. Program..

[36]  Donald Goldfarb,et al.  Robust convex quadratically constrained programs , 2003, Math. Program..

[37]  Katsuki Fujisawa,et al.  Exploiting sparsity in semidefinite programming via matrix completion II: implementation and numerical results , 2003, Math. Program..

[38]  Masakazu Kojima,et al.  Implementation and evaluation of SDPA 6.0 (Semidefinite Programming Algorithm 6.0) , 2003, Optim. Methods Softw..

[39]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[40]  Kim-Chuan Toh,et al.  Solving semidefinite-quadratic-linear programs using SDPT3 , 2003, Math. Program..

[41]  Samuel Burer,et al.  Semidefinite Programming in the Space of Partial Positive Semidefinite Matrices , 2003, SIAM J. Optim..

[42]  Stephen A. Vavasis,et al.  A Fully Sparse Implementation of a Primal-Dual Interior-Point Potential Reduction Method for Semidefinite Programming , 2004, ArXiv.

[43]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[44]  Yinyu Ye,et al.  DSDP5: Software for Semidefinite Programming , 2005 .

[45]  Masakazu Muramatsu,et al.  Sums of Squares and Semidefinite Programming Relaxations for Polynomial Optimization Problems with Structured Sparsity , 2004 .

[46]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[47]  Y. Nesterov Towards Nonsymmetric Conic Optimization , 2006 .

[48]  Y. Nesterov Nonsymmetric Potential-Reduction Methods for General Cones , 2006 .

[49]  Martin Berggren,et al.  Hybrid differentiation strategies for simulation and analysis of applications in C++ , 2008, TOMS.

[50]  M. Kojima,et al.  Correlative Sparsity in Primal-Dual Interior-Point Methods for LP, SDP, and SOCP , 2008 .

[51]  Vwani P. Roychowdhury,et al.  Covariance selection for nonchordal graphs via chordal embedding , 2008, Optim. Methods Softw..

[52]  YANQING CHEN,et al.  Algorithm 8 xx : CHOLMOD , supernodal sparse Cholesky factorization and update / downdate ∗ , 2006 .

[53]  Stephen P. Boyd,et al.  Graph Implementations for Nonsmooth Convex Programs , 2008, Recent Advances in Learning and Control.

[54]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[55]  Yurii Nesterov,et al.  Towards non-symmetric conic optimization , 2012, Optim. Methods Softw..