Surface Science Studies of Gas Sensing Materials: SnO2

This review is an attempt to give an overview on how surface science studies can contribute to a fundamental understanding of metal oxide gas sensors. In here tin dioxide is used as a model system for metal oxide gas sensor materials and we review surface science studies of single crystal SnO2. The composition, structure, electronic and chemical properties of the (110) and (101) surfaces is described. The influence of compositional changes as a function of the oxygen chemical potential on the electronic surface structure and the chemical properties is emphasized on the example of the (101) surface. The surface chemical properties are discussed on the example of water adsorption. It is shown the chemical and gas sensing properties depend strongly on the surface composition.

[1]  I. Tanaka,et al.  Tuning surface properties of SnO2(101) by reduction , 2006 .

[2]  U. Diebold,et al.  Characterizing solid state gas responses using surface charging in photoemission: water adsorption on SnO2(101) , 2006 .

[3]  I. Tanaka,et al.  Tuning the chemical functionality of a gas sensitive material : Water adsorption on SnO2(101) , 2006 .

[4]  B. Delley,et al.  Gas-phase-dependent properties of Sn O 2 (110), (100), and (101) single-crystal surfaces: Structure, composition, and electronic properties , 2005 .

[5]  U. Diebold,et al.  Pure and cobalt-doped SnO2(101) films grown by molecular beam epitaxy on Al2O3 , 2005 .

[6]  U. Diebold,et al.  The surface and materials science of tin oxide , 2005 .

[7]  U. Diebold,et al.  Tuning the oxide/organic interface: Benzene on SnO2(101) , 2004 .

[8]  Chongwu Zhou,et al.  Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices , 2004 .

[9]  U. Diebold,et al.  Surface oxygen chemistry of a gas-sensing material: SnO2(101) , 2004 .

[10]  F. Netzer,et al.  Vanadium oxide surface studies , 2003 .

[11]  Udo Weimar,et al.  CO sensing with SnO2 thick film sensors: role of oxygen and water vapour , 2003 .

[12]  U. Diebold,et al.  Surface morphologies of SnO2(1 1 0) , 2003 .

[13]  D. Cox,et al.  BF3 Adsorption on Stoichiometric and Oxygen-Deficient SnO2(110) Surfaces , 2003 .

[14]  Ulrike Diebold,et al.  The surface science of titanium dioxide , 2003 .

[15]  D. Cox,et al.  NH3 chemisorption on stoichiometric and oxygen-deficient SnO2(110) surfaces , 2002 .

[16]  M. Gillan,et al.  Reconstructions of strongly reduced SnO2(110) studied by first-principles methods , 2002 .

[17]  T. Rantala,et al.  Theoretical study of oxygen-deficient SnO 2 ( 110 ) surfaces , 2002 .

[18]  S. Bates Full-coverage adsorption of water on SnO2(110): the stabilisation of the molecular species , 2002 .

[19]  Michael A. Henderson,et al.  The Interaction of Water with Solid Surfaces: Fundamental Aspects Revisited , 2002 .

[20]  W. Ranke,et al.  Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers , 2002 .

[21]  N. Bârsan,et al.  Electronic structure of SnO2(110)-4×1 and sputtered SnO2(110) revealed by resonant photoemission , 2002 .

[22]  T. Rantala,et al.  Band structure and optical parameters of the SnO 2 ( 110 ) surface , 2001 .

[23]  Zhong Lin Wang,et al.  Ultra-long single crystalline nanoribbons of tin oxide , 2001 .

[24]  N. Bârsan,et al.  Oxygen-deficient SnO2(110) : a STM, LEED and XPS study , 2001 .

[25]  A. Atrei,et al.  The SnO2(110)(4 × 1) structure determined by LEED intensity analysis , 2001 .

[26]  M. Gillan,et al.  The energetics and structure of oxygen vacancies on the SnO2(110) surface , 2000 .

[27]  P. Lindan Water chemistry at the SnO2(110) surface: the role of inter-molecular interactions and surface geometry , 2000 .

[28]  G. Thornton,et al.  Structures of the 4×1 and 1×2 reconstructions of SnO 2 (110) , 2000 .

[29]  V. Lantto,et al.  Electronic structure of SnO2 (110) surface , 2000 .

[30]  R. Ionescu,et al.  Role of water vapour in the interaction of SnO2 gas sensors with CO and CH4 , 1999 .

[31]  V. Brynzari,et al.  Electrical behavior of SnO2 thin films in humid atmosphere , 1999 .

[32]  V. Lantto,et al.  Surface relaxation of the (110) face of rutile SnO2 , 1999 .

[33]  M. J. Gillan,et al.  Mixed Dissociative and Molecular Adsorption of Water on the Rutile (110) Surface , 1998 .

[34]  R. Egdell,et al.  The surface structure of SnO2(110)(4 × 1) revealed by scanning tunneling microscopy , 1997 .

[35]  P. Moseley,et al.  Solid state gas sensors , 1997 .

[36]  M. Gillan,et al.  The adsorption of H2O on TiO2 and SnO2(110) studied by first-principles calculations , 1995, mtrl-th/9508009.

[37]  M. Gillan,et al.  The Structure of the Stoichiometric and Reduced SnO2 (110) Surface , 1995, mtrl-th/9505011.

[38]  David F. Cox,et al.  Water adsorption on stoichiometric and defective SnO2(110) surfaces , 1995 .

[39]  M. Gillan,et al.  The Adsorption of H 2 O on TiO 2 and SnO 2 ( 110 ) Studied by First-Principles Calculations , 1995 .

[40]  J. Gilles,et al.  Oxygen 2s spectroscopy of tin oxides with synchrotron radiation-induced photoemission , 1994 .

[41]  D. Cox,et al.  Formic acid decomposition on SnO2(110) , 1994 .

[42]  D. Cox,et al.  Oxygen-vacancy-controlled chemistry on a metal oxide surface: methanol dissociation and oxidation on SnO2(110) , 1994 .

[43]  P. Harrison,et al.  Tin oxide surfaces: XXII. Fourier transform infrared study of the thermal decomposition of organotin-substituted tin(IV) oxide gels , 1993 .

[44]  R. Ionescu,et al.  The mechanism of the interaction between CO and an SnO2 surface: the role of water vapour , 1993 .

[45]  R. Cavicchi,et al.  Layer‐by‐layer growth of epitaxial SnO2 on sapphire by reactive sputter deposition , 1992 .

[46]  Johnson,et al.  Resonant-photoemission study of SnO2: Cationic origin of the defect band-gap states. , 1990, Physical review. B, Condensed matter.

[47]  R. Cavicchi,et al.  Preparation of well‐ordered, oxygen‐rich SnO2(110) surfaces via oxygen plasma treatment , 1990 .

[48]  T. Fryberger,et al.  Preferential isotopic labeling of lattice oxygen positions on the SnO2(110) surface , 1990 .

[49]  Koji Moriya,et al.  Adsorption behavior of CO and interfering gases on SnO2 , 1989 .

[50]  M. Madou,et al.  Chemical Sensing With Solid State Devices , 1989 .

[51]  W. Göpel,et al.  Defect structure and sensing mechanism of SnO2 gas sensors: Comparative electrical and spectroscopic studies , 1988 .

[52]  Cox,et al.  Oxygen vacancies and defect electronic states on the SnO2(110)-1 x 1 surface. , 1988, Physical review. B, Condensed matter.

[53]  Patricia A. Thiel,et al.  The interaction of water with solid surfaces: Fundamental aspects , 1987 .

[54]  David F. Cox,et al.  Fundamental characterization of clean and gas-dosed tin oxide , 1987 .

[55]  S. Semancik,et al.  Summary Abstract: Surface properties of clean and gas‐dosed SnO2(110) , 1987 .

[56]  R. Egdell,et al.  Oxygen deficient SnO2 (110) and TiO2 (110): A comparative study by photoemission , 1986 .

[57]  S. Semancik,et al.  Summary Abstract: Structural and electronic properties of clean and water‐dosed SnO2(110) , 1986 .

[58]  W. Gőpel Chemisorption and charge transfer at ionic semiconductor surfaces: Implications in designing gas sensors , 1985 .

[59]  J. Gilles,et al.  Influence of the surface reconstruction on the work function and surface conductance of (110)SnO2 , 1982 .

[60]  Makoto Egashira,et al.  Temperature programmed desorption study of water adsorbed on metal oxides. 2. Tin oxide surfaces , 1981 .

[61]  Shih-Chia Chang Oxygen chemisorption on tin oxide: Correlation between electrical conductivity and EPR measurements , 1980 .

[62]  Noboru Yamazoe,et al.  Interactions of tin oxide surface with O2, H2O AND H2 , 1979 .

[63]  M. Egashira,et al.  Temperature programmed desorption study of water adsorbed on metal oxides. I. Anatase and rutile. , 1978 .

[64]  J. Boyle,et al.  The effects of CO, water vapor and surface temperature on the conductivity of a SnO2 gas sensor , 1977 .

[65]  Philip G. Harrison,et al.  Tin oxide surfaces. Part 1.—Surface hydroxyl groups and the chemisorption of carbon dioxide and carbon monoxide on tin(IV) oxide , 1975 .

[66]  P. Harrison,et al.  Tin oxide surfaces. Part 3.—Infrared study of the adsorption of some small organic molecules on tin(IV) oxide , 1975 .

[67]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[68]  Daihua Zhang,et al.  Detection of NO 2 down to ppb Levels Using Individual and Multiple In 2 O 3 Nanowire Devices , 2022 .