Optimal Separable Algorithms to Compute the Reverse Euclidean Distance Transformation and Discrete Medial Axis in Arbitrary Dimension
暂无分享,去创建一个
[1] Jun-ichiro Toriwaki,et al. Reverse Distance Transformation and Skeletons Based upon the Euclidean Metric for n -Dimensional Digital Binary Pictures , 1994 .
[2] A. ROSENFELD,et al. Distance functions on digital pictures , 1968, Pattern Recognit..
[3] Wim H. Hesselink,et al. A General Algorithm for Computing Distance Transforms in Linear Time , 2000, ISMM.
[4] Jen-Hui Chuang,et al. Skeletonization of Three-Dimensional Object Using Generalized Potential Field , 2000, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Tomio Hirata,et al. A Unified Linear-Time Algorithm for Computing Distance Maps , 1996, Inf. Process. Lett..
[6] Grégoire Malandain,et al. 3-D chamfer distances and norms in anisotropic grids , 2005, Image Vis. Comput..
[7] Azriel Rosenfeld,et al. Digital geometry - geometric methods for digital picture analysis , 2004 .
[8] Yaorong Ge,et al. On the Generation of Skeletons from Discrete Euclidean Distance Maps , 1996, IEEE Trans. Pattern Anal. Mach. Intell..
[9] Wim H. Hesselink,et al. Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform , 2005, ISMM.
[10] Benoit M. Macq,et al. Fast Euclidean Distance Transformation by Propagation Using Multiple Neighborhoods , 1999, Comput. Vis. Image Underst..
[11] Ingela Nyström,et al. Efficient shape representation by minimizing the set of centres of maximal discs/spheres , 1997, Pattern Recognit. Lett..
[12] Sunghee Choi,et al. The power crust, unions of balls, and the medial axis transform , 2001, Comput. Geom..
[13] D. Lee,et al. Skeletonization via Distance Maps and Level Sets , 1995 .
[14] Michael Lindenbaum,et al. Euclidean Voronoi labelling on the multidimensional grid , 1995, Pattern Recognit. Lett..
[15] P. Danielsson. Euclidean distance mapping , 1980 .
[16] Franco P. Preparata,et al. Sequencing-by-hybridization revisited: the analog-spectrum proposal , 2004, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[17] Gabriella Sanniti di Baja. Well-Shaped, Stable, and Reversible Skeletons from the (3, 4)-Distance Transform , 1994, J. Vis. Commun. Image Represent..
[18] Jun-ichiro Toriwaki,et al. New algorithms for euclidean distance transformation of an n-dimensional digitized picture with applications , 1994, Pattern Recognit..
[19] Kaleem Siddiqi,et al. The Hamilton-Jacobi skeleton , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[20] Edouard Thiel,et al. Medial axis for chamfer distances: computing look-up tables and neighbourhoods in 2D or 3D , 2002, Pattern Recognit. Lett..
[21] Edouard Thiel,et al. Optimizing 3D chamfer masks with norm constraints , 2000 .
[22] Franz Aurenhammer,et al. Power Diagrams: Properties, Algorithms and Applications , 1987, SIAM J. Comput..
[23] Edouard Thiel,et al. Exact medial axis with euclidean distance , 2005, Image Vis. Comput..
[24] Weiguang Guan,et al. A List-Processing Approach to Compute Voronoi Diagrams and the Euclidean Distance Transform , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[25] Gunilla Borgefors,et al. Distance transformations in digital images , 1986, Comput. Vis. Graph. Image Process..
[26] Per-Erik Danielsson,et al. Finding the Minimal Set of Maximum Disks for Binary Objects , 1997, CVGIP Graph. Model. Image Process..
[27] Partha Pratim Das,et al. On approximating Euclidean metrics by digital distances in 2D and 3D , 2000, Pattern Recognit. Lett..
[28] Frederic Fol Leymarie,et al. Simulating the Grassfire Transform Using an Active Contour Model , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[29] David Coeurjolly. Algorithmique et géométrie discrète pour la caractérisation des courbes et des surfaces. (Algorithmic and digital geometry for curve and surface characterization) , 2002 .
[30] Calvin R. Maurer,et al. A Linear Time Algorithm for Computing Exact Euclidean Distance Transforms of Binary Images in Arbitrary Dimensions , 2003, IEEE Trans. Pattern Anal. Mach. Intell..
[31] Gabriella Sanniti di Baja,et al. Pruning Discrete and Semiocontinuous Skeletons , 1995, ICIAP.
[32] Azriel Rosenfeld,et al. Geometric Methods for Digital Picture Analysis , 2005 .
[33] Benjamin B. Kimia,et al. On the Local Form and Transitions of Symmetry Sets, Medial Axes, and Shocks , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.
[34] Benjamin B. Kimia,et al. A formal classification of 3D medial axis points and their local geometry , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[35] Ugo Montanari,et al. Continuous Skeletons from Digitized Images , 1969, JACM.
[36] Dominique Attali,et al. Computing and Simplifying 2D and 3D Continuous Skeletons , 1997, Comput. Vis. Image Underst..
[37] Mariette Yvinec,et al. An Algorithm for Constructing the Convex Hull of a Set of Spheres in Dimension D , 1996, Comput. Geom..
[38] James C. Mullikin,et al. The vector distance transform in two and three dimensions , 1992, CVGIP Graph. Model. Image Process..
[39] Michael Ian Shamos,et al. Computational geometry: an introduction , 1985 .
[40] Ching-Shoei Chiang. The Euclidean distance transform , 1992 .
[41] Benedek Nagy. A Comparison Among Distances Based on Neighborhood Sequences in Regular Grids , 2005, SCIA.
[42] Grégoire Malandain,et al. Euclidean skeletons , 1998, Image Vis. Comput..
[43] Azriel Rosenfeld,et al. Sequential Operations in Digital Picture Processing , 1966, JACM.