Exceptional rotations of random graphs: a VC theory
暂无分享,去创建一个
Luc Devroye | Gábor Lugosi | Sébastien Bubeck | Shankar Bhamidi | Louigi Addario-Berry | Roberto Imbuzeiro Oliveira
[1] Vladimir Vapnik,et al. Chervonenkis: On the uniform convergence of relative frequencies of events to their probabilities , 1971 .
[2] S. Li. Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .
[3] V. Vapnik,et al. Necessary and Sufficient Conditions for the Uniform Convergence of Means to their Expectations , 1982 .
[4] P. Erdos,et al. On the evolution of random graphs , 1984 .
[5] Gábor Lugosi,et al. Concentration Inequalities - A Nonasymptotic Theory of Independence , 2013, Concentration Inequalities.
[6] Shun-ichi Amari,et al. A Theory of Pattern Recognition , 1968 .
[7] L. Schläfli. Gesammelte mathematische Abhandlungen , 1950 .
[8] Jiri Matousek,et al. Lectures on discrete geometry , 2002, Graduate texts in mathematics.
[9] N. Alon,et al. Increasing the chromatic number of a random graph , 2010 .
[10] J. Steif. 2 9 Ja n 20 09 A survey of dynamical percolation , 2009 .
[11] JI f.. Some Large Deviation Results for Sparse Random Graphs , 2001 .
[12] Joel H. Spencer,et al. Sharp concentration of the chromatic number on random graphsGn, p , 1987, Comb..
[13] B. Bollobás. The evolution of random graphs , 1984 .
[14] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[15] Thomas M. Cover,et al. Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..
[16] Béla Bollobás,et al. Random Graphs , 1985 .
[17] H. Schwarz,et al. Gesammelte mathematische Abhandlungen, Band 2(it) , 1890 .
[18] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[19] A. Rbnyi. ON THE EVOLUTION OF RANDOM GRAPHS , 2001 .
[20] Béla Bollobás,et al. The chromatic number of random graphs , 1988, Comb..