Gene regulatory network analysis in sea urchin embryos.

[1]  E. Davidson Genomic Regulatory Systems: Development and Evolution , 2005 .

[2]  Eric H Davidson,et al.  Expression patterns of four different regulatory genes that function during sea urchin development. , 2004, Gene expression patterns : GEP.

[3]  Eric H Davidson,et al.  An otx cis-regulatory module: a key node in the sea urchin endomesoderm gene regulatory network. , 2004, Developmental biology.

[4]  E. Davidson,et al.  Isolation of pigment cell specific genes in the sea urchin embryo by differential macroarray screening , 2003, Development.

[5]  G. Spinelli,et al.  Impairing Otp homeodomain function in oral ectoderm cells affects skeletogenesis in sea urchin embryos. , 2003, Developmental biology.

[6]  L. Newman,et al.  Tight regulation of SpSoxB factors is required for patterning and morphogenesis in sea urchin embryos. , 2003, Developmental biology.

[7]  Eric H Davidson,et al.  Spdeadringer, a sea urchin embryo gene required separately in skeletogenic and oral ectoderm gene regulatory networks. , 2003, Developmental biology.

[8]  P. Oliveri,et al.  Alx1, a member of the Cart1/Alx3/Alx4 subfamily of Paired-class homeodomain proteins, is an essential component of the gene network controlling skeletogenic fate specification in the sea urchin embryo , 2003, Development.

[9]  Eric H Davidson,et al.  Activation of pmar1 controls specification of micromeres in the sea urchin embryo. , 2003, Developmental biology.

[10]  L. Hood,et al.  Regulatory gene networks and the properties of the developmental process , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Eric H Davidson,et al.  New computational approaches for analysis of cis-regulatory networks. , 2002, Developmental biology.

[12]  E. Davidson,et al.  New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization. , 2002, Developmental biology.

[13]  E. Davidson,et al.  brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening. , 2002, Developmental biology.

[14]  Eric H Davidson,et al.  A regulatory gene network that directs micromere specification in the sea urchin embryo. , 2002, Developmental biology.

[15]  Eric H Davidson,et al.  Patchy interspecific sequence similarities efficiently identify positive cis-regulatory elements in the sea urchin. , 2002, Developmental biology.

[16]  Zuzana Dobbie,et al.  Processing of gene expression data generated by quantitative real-time RT-PCR. , 2002, BioTechniques.

[17]  Eric H Davidson,et al.  A provisional regulatory gene network for specification of endomesoderm in the sea urchin embryo. , 2002, Developmental biology.

[18]  J. Heasman Morpholino oligos: making sense of antisense? , 2002, Developmental biology.

[19]  L. Hood,et al.  A Genomic Regulatory Network for Development , 2002, Science.

[20]  R. Angerer,et al.  Sea urchin goosecoid function links fate specification along the animal-vegetal and oral-aboral embryonic axes. , 2001, Development.

[21]  A. Schulze,et al.  Navigating gene expression using microarrays — a technology review , 2001, Nature Cell Biology.

[22]  E. Davidson,et al.  Correct Expression of spec2a in the sea urchin embryo requires both Otx and other cis-regulatory elements. , 2001, Developmental biology.

[23]  E. Davidson,et al.  Cis-regulatory logic in the endo16 gene: switching from a specification to a differentiation mode of control. , 2001, Development.

[24]  L. Newman,et al.  SpKrl: a direct target of beta-catenin regulation required for endoderm differentiation in sea urchin embryos. , 2001, Development.

[25]  E. Davidson,et al.  Recovery of developmentally defined gene sets from high-density cDNA macroarrays. , 2000, Developmental biology.

[26]  L. Hood,et al.  EST analysis of gene expression in early cleavage-stage sea urchin embryos. , 1999, Development.

[27]  W. Klein,et al.  Requirement of SpOtx in cell fate decisions in the sea urchin embryo and possible role as a mediator of beta-catenin signaling. , 1999, Developmental biology.

[28]  S. Meier-Ewert,et al.  Toward the gene catalogue of sea urchin development: the construction and analysis of an unfertilized egg cDNA library highly normalized by oligonucleotide fingerprinting. , 1999, Genomics.

[29]  D. McClay,et al.  LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. , 1999, Development.

[30]  D. McClay,et al.  Nuclear beta-catenin is required to specify vegetal cell fates in the sea urchin embryo. , 1999, Development.

[31]  E. Davidson,et al.  Green Fluorescent Protein in the sea urchin: new experimental approaches to transcriptional regulatory analysis in embryos and larvae. , 1997, Development.

[32]  J. Summerton,et al.  Morpholino antisense oligomers: design, preparation, and properties. , 1997, Antisense & nucleic acid drug development.

[33]  R. Britten,et al.  SpZ12-1, a negative regulator required for spatial control of the territory-specific CyIIIa gene in the sea urchin embryo. , 1995, Development.

[34]  E. Rondinelli,et al.  Polyubiquitin RNA characteristics and conditional induction in sea urchin embryos. , 1991, Developmental biology.

[35]  J. Baldwin,et al.  Development and Evolution. , 1903 .

[36]  E. Davidson Genomic Regulatory Systems , 2001 .

[37]  E. Davidson,et al.  Spatial and temporal information processing in the sea urchin embryo: modular and intramodular organization of the CyIIIa gene cis-regulatory system. , 1996, Development.

[38]  N. Costlow,et al.  A molecular titration assay to measure transcript prevalence levels. , 1987, Methods in enzymology.

[39]  Eric H. Davidson,et al.  Gene activity in early development , 1968 .