The norm of a discretized gradient in $$\varvec{H({{\mathrm{div}}})^*}$$H(div)∗ for a posteriori finite element error analysis

This paper characterizes the norm of the residual of mixed schemes in their natural functional framework with fluxes or stresses in $$H({{\mathrm{div}}})$$H(div) and displacements in $$L^2$$L2. Under some natural conditions on an associated Fortin interpolation operator, reliable and efficient error estimates are introduced that circumvent the duality technique and so do not suffer from reduced elliptic regularity for non-convex domains. For the Laplace, Stokes, and Lamé equations, this generalizes known estimators to non-convex domains and introduces new a posteriori error estimators.

[1]  Alan Demlow,et al.  A Posteriori Error Estimates for Finite Element Exterior Calculus: The de Rham Complex , 2012, Foundations of Computational Mathematics.

[2]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[3]  R. Stenberg A family of mixed finite elements for the elasticity problem , 1988 .

[4]  Joachim Schöberl,et al.  A posteriori error estimates for Maxwell equations , 2007, Math. Comput..

[5]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[6]  Pavel B. Bochev,et al.  Mathematical Foundations of Least-Squares Finite Element Methods , 2009 .

[7]  Carsten Carstensen,et al.  A unifying theory of a posteriori finite element error control , 2005, Numerische Mathematik.

[8]  Ping Wang,et al.  Least-Squares Methods for Incompressible Newtonian Fluid Flow: Linear Stationary Problems , 2004, SIAM J. Numer. Anal..

[9]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[10]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[11]  J. Douglas,et al.  PEERS: A new mixed finite element for plane elasticity , 1984 .

[12]  J. Craggs Applied Mathematical Sciences , 1973 .

[13]  Jun Hu,et al.  A unifying theory of a posteriori error control for nonconforming finite element methods , 2007, Numerische Mathematik.

[14]  Thomas A. Manteuffel,et al.  LOCAL ERROR ESTIMATES AND ADAPTIVE REFINEMENT FOR FIRST-ORDER SYSTEM LEAST SQUARES (FOSLS) , 1997 .

[15]  Carsten Carstensen,et al.  A posteriori error estimates for mixed FEM in elasticity , 1998, Numerische Mathematik.

[16]  Dongho Kim,et al.  A Priori and A Posteriori Pseudostress-velocity Mixed Finite Element Error Analysis for the Stokes Problem , 2011, SIAM J. Numer. Anal..

[17]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[18]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..

[19]  A. Alonso Error estimators for a mixed method , 1996 .

[20]  C. Bahriawati,et al.  Three Matlab Implementations of the Lowest-order Raviart-Thomas Mfem with a Posteriori Error Control , 2005 .