Nucleotide binding by the histidine kinase CheA

[1]  Brendan W. Wren,et al.  Helicobacter pylori Possesses Two CheY Response Regulators and a Histidine Kinase Sensor, CheA, Which Are Essential for Chemotaxis and Colonization of the Gastric Mucosa , 2000, Infection and Immunity.

[2]  Yan Zhu,et al.  Solution structure of the homodimeric core domain of Escherichia coli histidine kinase EnvZ , 1999, Nature Structural Biology.

[3]  S. Normark,et al.  Emergence of vancomycin tolerance in Streptococcus pneumoniae , 1999, Nature.

[4]  C. Ban,et al.  Transformation of MutL by ATP Binding and Hydrolysis A Switch in DNA Mismatch Repair , 1999, Cell.

[5]  C R Kissinger,et al.  Rapid automated molecular replacement by evolutionary search. , 1999, Acta crystallographica. Section D, Biological crystallography.

[6]  M. Simon,et al.  Structure of CheA, a Signal-Transducing Histidine Kinase , 1999, Cell.

[7]  F. Hartl,et al.  In Vivo Function of Hsp90 Is Dependent on ATP Binding and ATP Hydrolysis , 1998, The Journal of cell biology.

[8]  C. Ban,et al.  Crystal Structure and ATPase Activity of MutL Implications for DNA Repair and Mutagenesis , 1998, Cell.

[9]  Mitsuhiko Ikura,et al.  NMR structure of the histidine kinase domain of the E. coli osmosensor EnvZ , 1998, Nature.

[10]  R. Stewart,et al.  TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli. , 1998, Biochemistry.

[11]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[12]  M. Inouye,et al.  Two-domain reconstitution of a functional protein histidine kinase. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Walter H.J. Ward,et al.  The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: a thermodynamic and crystallographic study. , 1997, Biochemistry.

[14]  L. Pearl,et al.  Identification and Structural Characterization of the ATP/ADP-Binding Site in the Hsp90 Molecular Chaperone , 1997, Cell.

[15]  Laurence H. Pearl,et al.  A molecular clamp in the crystal structure of the N-terminal domain of the yeast Hsp90 chaperone , 1997, Nature Structural Biology.

[16]  N. Carbonetti,et al.  Genetic analysis of pertussis toxin promoter activation in Bordetella pertussis , 1997, Molecular microbiology.

[17]  D. Rees,et al.  Structure of ADP·AIF4 –-stabilized nitrogenase complex and its implications for signal transduction , 1997, Nature.

[18]  Neal Rosen,et al.  Crystal Structure of an Hsp90–Geldanamycin Complex: Targeting of a Protein Chaperone by an Antitumor Agent , 1997, Cell.

[19]  R M Esnouf,et al.  An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. , 1997, Journal of molecular graphics & modelling.

[20]  E. Alnemri,et al.  Nucleotides and Two Functional States of hsp90* , 1997, The Journal of Biological Chemistry.

[21]  C V Smith,et al.  The nature of inhibition of DNA gyrase by the coumarins and the cyclothialidines revealed by X‐ray crystallography. , 1996, The EMBO journal.

[22]  J. Weber,et al.  Binding and Hydrolysis of TNP-ATP by Escherichia coli F-ATPase (*) , 1996, The Journal of Biological Chemistry.

[23]  J. Koland,et al.  Nucleotide Binding by the Epidermal Growth Factor Receptor Protein-tyrosine Kinase , 1996, The Journal of Biological Chemistry.

[24]  M. Simon,et al.  Thermostable chemotaxis proteins from the hyperthermophilic bacterium Thermotoga maritima , 1996, Journal of bacteriology.

[25]  M. Simon,et al.  NMR studies of the phosphotransfer domain of the histidine kinase CheA from Escherichia coli: assignments, secondary structure, general fold, and backbone dynamics. , 1995, Biochemistry.

[26]  A. Engelman,et al.  Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. , 1994, Science.

[27]  H. Hamm,et al.  GTPase mechanism of Gproteins from the 1.7-Å crystal structure of transducin α - GDP AIF−4 , 1994, Nature.

[28]  E A Merritt,et al.  Raster3D Version 2.0. A program for photorealistic molecular graphics. , 1994, Acta crystallographica. Section D, Biological crystallography.

[29]  R. Hakenbeck,et al.  A two‐component signal‐transducing system is involved in competence and penicillin susceptibility in laboratory mutants of Streptococcus pneumoniae , 1994, Molecular microbiology.

[30]  J. Navaza,et al.  AMoRe: an automated package for molecular replacement , 1994 .

[31]  A. Maxwell,et al.  Identifying the catalytic residue of the ATPase reaction of DNA gyrase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[32]  E. Meyerowitz,et al.  Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. , 1993, Science.

[33]  M. Simon,et al.  Expression of CheA fragments which define domains encoding kinase, phosphotransfer, and CheY binding activities. , 1993, Biochemistry.

[34]  M. Simon,et al.  The carboxy-terminal portion of the CheA kinase mediates regulation of autophosphorylation by transducer and CheW , 1993, Journal of bacteriology.

[35]  J. Thornton,et al.  PROCHECK: a program to check the stereochemical quality of protein structures , 1993 .

[36]  D. McRee,et al.  A visual protein crystallographic software system for X11/Xview , 1992 .

[37]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[38]  D. Wigley,et al.  Crystal structure of an N-terminal fragment of the DNA gyrase B protein , 1991, Nature.

[39]  J. Hoch,et al.  Initiation of sporulation in B. subtilis is controlled by a multicomponent phosphorelay , 1991, Cell.

[40]  F. Dahlquist,et al.  Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[41]  W. Dreyer,et al.  Measurement of protein-binding phenomena by gel filtration. , 1962, Biochimica et biophysica acta.

[42]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[43]  J. S. Parkinson,et al.  Communication modules in bacterial signaling proteins. , 1992, Annual review of genetics.

[44]  M. Simon,et al.  Coupling of receptor function to phosphate-transfer reactions in bacterial chemotaxis. , 1991, Methods in enzymology.

[45]  M. Simon,et al.  Phosphorylation assays for proteins of the two-component regulatory system controlling chemotaxis in Escherichia coli. , 1991, Methods in enzymology.