Bioinspired multifunctional layered magnetic hybrid materials

Nature has taken millennia to come up with unique solutions for providing materials with properties tailored toward versatile demands, making use of the very limited resources available in natural ...

[1]  A. Evans,et al.  Crack deflection at an interface between dissimilar elastic materials: Role of residual stresses , 1994 .

[2]  Robert L. Kuczkowski,et al.  Molecular structures of gas‐phase polyatomic molecules determined by spectroscopic methods , 1979 .

[3]  Qianqian Wang,et al.  Stress and Damage Mitigation from Oriented Nanostructures within the Radular Teeth of Cryptochiton stelleri , 2014 .

[4]  Qunfeng Cheng,et al.  Layered nanocomposites inspired by the structure and mechanical properties of nacre. , 2012, Chemical Society reviews.

[5]  H. Cölfen,et al.  Ionic Dependence of Gelatin Hydrogel Architecture Explored Using Small and Very Small Angle Neutron Scattering Technique. , 2018, Macromolecular bioscience.

[6]  J. Aizenberg,et al.  Multifunctionality of chiton biomineralized armor with an integrated visual system , 2015, Science.

[7]  Steven R. Kline,et al.  Reduction and analysis of SANS and USANS data using IGOR Pro , 2006 .

[8]  E. Matijević,et al.  Formation of uniform spherical magnetite particles by crystallization from ferrous hydroxide gels , 1980 .

[9]  Junmei Wang,et al.  Development and testing of a general amber force field , 2004, J. Comput. Chem..

[10]  A. Walther,et al.  Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. , 2013, ACS applied materials & interfaces.

[11]  H. Cölfen,et al.  Biopolymer-Directed Magnetic Composites , 2018 .

[12]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[13]  I. Bressler,et al.  McSAS: software for the retrieval of model parameter distributions from scattering patterns , 2015, Journal of applied crystallography.

[14]  H. Frielinghaus,et al.  KWS-1 high-resolution small-angle neutron scattering instrument at JCNS: current state , 2015 .

[15]  W. Tremel,et al.  Nucleation and growth of CaCO3 mediated by the egg-white protein ovalbumin: a time-resolved in situ study using small-angle neutron scattering. , 2008, Journal of the American Chemical Society.

[16]  H. A. Lorentz Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase , 1881 .

[17]  D. Faivre,et al.  From bacteria to mollusks: the principles underlying the biomineralization of iron oxide materials. , 2015, Angewandte Chemie.

[18]  Sow-Hsin Chen,et al.  Analysis of small angle neutron scattering spectra from polydisperse interacting colloids , 1983 .

[19]  Shuhong Yu,et al.  Mass production of bulk artificial nacre with excellent mechanical properties , 2017, Nature Communications.

[20]  D. Zahn,et al.  Atomistic mechanisms of ZnO aggregation from ethanolic solution: ion association, proton transfer, and self-organization. , 2008, Nano letters.

[21]  D. Schüler,et al.  Biologically controlled synthesis and assembly of magnetite nanoparticles† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c4fd00240g Click here for additional data file. , 2015, Faraday discussions.

[22]  B. Bhushan,et al.  A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications , 2002 .

[23]  J. Anwar,et al.  Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. , 2011, Angewandte Chemie.

[24]  Zhiyong Tang,et al.  Nanostructured artificial nacre , 2003, Nature materials.

[25]  Steve Weiner,et al.  Mollusk shell formation: a source of new concepts for understanding biomineralization processes. , 2006, Chemistry.

[26]  Ullrich Steiner,et al.  Biomimetic layer-by-layer assembly of artificial nacre , 2012, Nature Communications.

[27]  Olga Kennard,et al.  Tables of bond lengths determined by X-ray and neutron diffraction. Part 1. Bond lengths in organic compounds , 1987 .

[28]  Steven A Herrera,et al.  Competing mechanisms in the wear resistance behavior of biomineralized rod-like microstructures , 2016 .

[30]  P. Fratzl,et al.  Hierarchically structured vanadium pentoxide-polymer hybrid materials. , 2014, ACS nano.

[31]  O. Ikkala,et al.  Toughness and Fracture Properties in Nacre‐Mimetic Clay/Polymer Nanocomposites , 2017 .

[32]  Randall M. Erb,et al.  Mechanics of platelet-reinforced composites assembled using mechanical and magnetic stimuli. , 2013, ACS applied materials & interfaces.

[33]  R. Ritchie,et al.  Tough, Bio-Inspired Hybrid Materials , 2008, Science.

[34]  Frankel,et al.  Magnetic microstructure of magnetotactic bacteria by electron holography , 1998, Science.

[35]  Jianshu Li,et al.  From molecules to macrostructures: recent development of bioinspired hard tissue repair. , 2017, Biomaterials science.

[36]  D. Faivre Formation of magnetic nanoparticle chains in bacterial systems , 2015, MRS Bulletin.

[37]  Adam J. Stevenson,et al.  Strong, tough and stiff bioinspired ceramics from brittle constituents. , 2014, Nature materials.

[38]  Lei Liu,et al.  Synthetic nacre by predesigned matrix-directed mineralization , 2016, Science.

[39]  J. Méndez,et al.  Spectroscopic study of sol-gel silica doped with iron ions , 1992 .

[40]  S. Weiner,et al.  X‐ray diffraction study of the insoluble organic matrix of mollusk shells , 1980 .

[41]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[42]  T. Matsunaga,et al.  Proteomic analysis from the mineralized radular teeth of the giant Pacific chiton, Cryptochiton stelleri (Mollusca) , 2012, Proteomics.

[43]  N. Kotov,et al.  Fusion of Seashell Nacre and Marine Bioadhesive Analogs: High‐Strength Nanocomposite by Layer‐by‐Layer Assembly of Clay and L‐3,4‐Dihydroxyphenylalanine Polymer , 2007 .

[44]  James C. Weaver,et al.  Analysis of an ultra hard magnetic biomineral in chiton radular teeth , 2010 .

[45]  Z. Fu,et al.  KWS-3: Very small angle scattering diffractometer with focusing mirror , 2015 .

[46]  N. Pugno,et al.  Extreme strength observed in limpet teeth , 2015, Journal of The Royal Society Interface.

[47]  Chan Beum Park,et al.  Bio‐Inspired Synthesis of Minerals for Energy, Environment, and Medicinal Applications , 2013 .

[48]  W. V. Bronswijk,et al.  Mineralisation in the teeth of the limpets Patelloida alticostata and Scutellastra laticostata (Mollusca : Patellogastropoda) , 2004 .

[49]  L. Brooker,et al.  Apatite Mineralization in Teeth of the Chiton Acanthopleura echinata , 2000, Calcified Tissue International.

[50]  Himadri S. Gupta,et al.  Retrosynthesis of nacre via amorphous precursor particles , 2005 .

[51]  D. Kaplan,et al.  Chitosan Film Acylation and Effects on Biodegradability , 1996 .

[52]  P. Zavattieri,et al.  Analysis of the mechanical response of biomimetic materials with highly oriented microstructures through 3D printing, mechanical testing and modeling. , 2015, Journal of the mechanical behavior of biomedical materials.

[53]  P. Wal Structural and material design of mature mineralized radula teeth of Patella vulgata (gastropoda) , 1989 .

[54]  Andreas Walther,et al.  Nacre-mimetics with synthetic nanoclays up to ultrahigh aspect ratios , 2015, Nature Communications.

[55]  P. Hansma,et al.  Exploring molecular and mechanical gradients in structural bioscaffolds. , 2004, Biochemistry.

[56]  Wenle Li,et al.  Freeze casting of porous materials: review of critical factors in microstructure evolution , 2012 .

[57]  James C. Weaver,et al.  Phase Transformations and Structural Developments in the Radular Teeth of Cryptochiton Stelleri , 2013 .

[58]  André R Studart,et al.  Composites Reinforced in Three Dimensions by Using Low Magnetic Fields , 2012, Science.

[59]  F. Meldrum,et al.  Controlling mineral morphologies and structures in biological and synthetic systems. , 2008, Chemical reviews.

[60]  Steve Weiner,et al.  Macromolecules in mollusc shells and their functions in biomineralization , 1984 .

[61]  Damien Faivre,et al.  Magnetotactic bacteria and magnetosomes. , 2008, Chemical reviews.

[62]  P. Simon,et al.  Biomimetic fluorapatite-gelatine nanocomposites: pre-structuring of gelatine matrices by ion impregnation and its effect on form development. , 2006, Angewandte Chemie.

[63]  María del Puerto Morales,et al.  Static and dynamic magnetic properties of spherical magnetite nanoparticles , 2003 .

[64]  Daesung Park,et al.  Hierarchical Nacre Mimetics with Synergistic Mechanical Properties by Control of Molecular Interactions in Self-Healing Polymers. , 2015, Angewandte Chemie.

[65]  Shuhong Yu,et al.  25th Anniversary Article: Artificial Carbonate Nanocrystals and Layered Structural Nanocomposites Inspired by Nacre: Synthesis, Fabrication and Applications , 2014, Advanced materials.

[66]  W. Jahnen-Dechent,et al.  Structural dynamics of a colloidal protein-mineral complex bestowing on calcium phosphate a high solubility in biological fluids , 2007, Biointerphases.

[67]  A. Studart Bioinspired ceramics: Turning brittleness into toughness. , 2014, Nature materials.

[68]  D. Faivre,et al.  Synthesis and Characterization of Gelatin-Based Magnetic Hydrogels , 2014, Advanced functional materials.

[69]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[70]  H. Cölfen Bio-inspired Mineralization Using Hydrophilic Polymers , 2006 .

[71]  D. Faivre,et al.  Multifunctional layered magnetic composites , 2015, Beilstein journal of nanotechnology.