Chaotic Time Series Prediction: Run for the Horizon

[1]  E. A. Jackson The Lorenz System: I. The Global Structure of its Stable Manifolds , 1985 .

[2]  Raymond Y. K. Lau,et al.  Time series k-means: A new k-means type smooth subspace clustering for time series data , 2016, Inf. Sci..

[3]  Ying Wah Teh,et al.  Time-series clustering - A decade review , 2015, Inf. Syst..

[4]  Mariette Awad,et al.  Anytime multipurpose emotion recognition from EEG data using a Liquid State Machine based framework , 2018, Artif. Intell. Medicine.

[5]  Witold Pedrycz,et al.  Clustering Spatiotemporal Data: An Augmented Fuzzy C-Means , 2013, IEEE Transactions on Fuzzy Systems.

[6]  Francisco Martínez-Álvarez,et al.  Big Data Analytics for Discovering Electricity Consumption Patterns in Smart Cities , 2018 .

[7]  Francisco Martínez-Álvarez,et al.  Data Science and Big Data in Energy Forecasting , 2018 .

[8]  Ahmed Kattan,et al.  Time-series event-based prediction: An unsupervised learning framework based on genetic programming , 2015, Inf. Sci..

[9]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[10]  N. I. Obodan,et al.  Prediction and Control of Buckling: The Inverse Bifurcation Problems for von Karman Equations , 2019, Applied Mathematical Analysis: Theory, Methods, and Applications.

[11]  N. I. Obodan,et al.  Rapid identification of pre-buckling states: A case of cylindrical shell , 2018 .

[12]  Vasilii A. Gromov,et al.  Active cluster replacement algorithm as a tool to assess bifurcation early-warning signs for von Karman equations , 2017, Artif. Intell. Res..

[13]  Liang Zhao,et al.  Time series clustering via community detection in networks , 2015, Inf. Sci..

[14]  Vasilii A. Gromov,et al.  Precocious identification of popular topics on Twitter with the employment of predictive clustering , 2016, Neural Computing and Applications.

[15]  José Luis Díez,et al.  Dynamic clustering of residential electricity consumption time series data based on Hausdorff distance , 2016 .

[16]  Pierpaolo D'Urso,et al.  GARCH-based robust clustering of time series , 2016, Fuzzy Sets Syst..

[17]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[18]  Eamonn J. Keogh,et al.  Clustering of time-series subsequences is meaningless: implications for previous and future research , 2004, Knowledge and Information Systems.

[19]  Vasilii A. Gromov,et al.  Predictive clustering on non-successive observations for multi-step ahead chaotic time series prediction , 2015, Neural Computing and Applications.

[20]  Duong Tuan Anh,et al.  Motif-Based Method for Initialization the K-Means Clustering for Time Series Data , 2011, Australasian Conference on Artificial Intelligence.

[21]  Francisco Martinez Alvarez,et al.  Energy Time Series Forecasting Based on Pattern Sequence Similarity , 2011, IEEE Transactions on Knowledge and Data Engineering.

[22]  Luc De Raedt,et al.  Top-Down Induction of Clustering Trees , 1998, ICML.

[23]  D. Wishart,et al.  Numerical Classification Method for deriving Natural Classes , 1969, Nature.

[24]  Eamonn J. Keogh,et al.  Clustering Time Series Using Unsupervised-Shapelets , 2012, 2012 IEEE 12th International Conference on Data Mining.

[25]  Russel Pears,et al.  A Novel Evolving Clustering Algorithm with Polynomial Regression for Chaotic Time-Series Prediction , 2009, ICONIP.

[26]  G. Kitagawa,et al.  Information Criteria and Statistical Modeling , 2007 .

[27]  Witold Pedrycz,et al.  Agreement-based fuzzy C-means for clustering data with blocks of features , 2014, Neurocomputing.

[28]  Vasilii A. Gromov,et al.  Chaotic time series prediction with employment of ant colony optimization , 2012, Expert Syst. Appl..