Simulations of a proof-of-principle experiment for collinear laser spectroscopy within a multi-reflection time-of-flight device

[1]  K. Flanagan,et al.  Collinear laser spectroscopy at ISOLDE: new methods and highlights , 2017 .

[2]  G. Birkl,et al.  A compact source for bunches of singly charged atomic ions. , 2016, The Review of scientific instruments.

[3]  M. Pearson,et al.  Laser spectroscopy for nuclear structure physics , 2016 .

[4]  L. Schweikhard,et al.  Delayed bunching for multi-reflection time-of-flight mass separation , 2015 .

[5]  L. Schweikhard Isobar separation and precision mass spectrometry of short-lived nuclides with a multi- reflection time-of-flight analyzer , 2014 .

[6]  M. Bissell,et al.  Nuclear charge radii of potassium isotopes beyond N = 28 , 2013, 1310.5171.

[7]  V. Manea,et al.  ISOLTRAP's multi-reflection time-of-flight mass separator/spectrometer , 2013 .

[8]  D. Lunney,et al.  Masses of exotic calcium isotopes pin down nuclear forces , 2013, Nature.

[9]  L. Schweikhard,et al.  Towards systematic investigations of space-charge phenomena in multi-reflection ion traps , 2013 .

[10]  Klaus Blaum,et al.  Precision atomic physics techniques for nuclear physics with radioactive beams , 2012, 1210.4045.

[11]  Alexander Herlert,et al.  On-line separation of short-lived nuclei by a multi-reflection time-of-flight device , 2012 .

[12]  Lutz Schweikhard,et al.  Static-mirror ion capture and time focusing for electrostatic ion-beam traps and multi-reflection time-of-flight mass analyzers by use of an in-trap potential lift , 2012 .

[13]  J. Ullrich,et al.  A cryogenic electrostatic trap for long-time storage of keV ion beams. , 2010, The Review of scientific instruments.

[14]  Y. Yamazaki,et al.  Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions , 2009 .

[15]  R. A. Williams,et al.  Short pulse laser-induced dissociation of vibrationally cold, trapped molecular ions , 2009 .

[16]  T. Udem,et al.  Precision spectroscopy of the 3s-3p fine-structure doublet in Mg+ , 2009, 0907.0368.

[17]  M. Petrick,et al.  Isobar separation by time-of-flight mass spectrometry for low-energy radioactive ion beam facilities , 2008 .

[18]  A. Piechaczek,et al.  Development of a high resolution isobar separator for study of exotic decays , 2007 .

[19]  S. Schwarz IonCool¿A versatile code to characterize gas-filled ion bunchers and coolers (not only) for nuclear physics applications , 2006 .

[20]  M. Berz,et al.  Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment: Editorial , 2006 .

[21]  Y. X. Wang,et al.  Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms , 2018 .

[22]  W. Benner A Gated Electrostatic Ion Trap To Repetitiously Measure the Charge and m/z of Large Electrospray Ions , 1997 .

[23]  M. Rappaport,et al.  Electrostatic bottle for long-time storage of fast ion beams , 1997 .

[24]  A. Dezfuli,et al.  Production, transfer and injection of charged particles in traps and storage rings , 1995 .

[25]  Hermann Wollnik,et al.  Time-of-flight mass spectrometers with multiply reflected ion trajectories , 1990 .

[26]  W. Ansbacher,et al.  Precision lifetime measurement for the 3p levels of Mg II using frequency-doubled laser radiation to excite a fast ion beam , 1989 .

[27]  S. Kaufman High-resolution laser spectroscopy in fast beams , 1976 .