Linear Differential Algebraic Equations and Observers

Observers play an important role in the control of linear systems. Given the importance of DAE models, it is natural that there has been considerable interest in designing and using observers for DAEs. The first part of this paper surveys some aspects of DAEs and observers that lay the foundation for the second part which discusses a recent general approach to observer design for linear DAEs using completions. This approach also holds great promise for nonlinear DAEs.

[1]  M. Darouach,et al.  Constrained observer based control for linear singular systems , 2010, 18th Mediterranean Conference on Control and Automation, MED'10.

[2]  Jochen Trumpf Observers for linear time-varying systems , 2007 .

[3]  Stephen L. Campbell,et al.  Uniqueness of completions for linear time varying differential algebraic equations , 1992 .

[4]  B. D. Anderson,et al.  Time-varying version of the lemma of Lyapunov , 1967 .

[5]  M. Darouach Functional observers for linear descriptor systems , 2009 .

[6]  B. Gopinath On the control of linear multiple input-output systems , 1971 .

[7]  J. Aplevich Implicit Linear Systems , 1991 .

[8]  Nan K. Loh,et al.  Observer design for time-varying systems , 1991 .

[9]  Mohamed Darouach,et al.  Observers for a Class of Nonlinear Singular Systems , 2008, IEEE Transactions on Automatic Control.

[10]  S. Campbell,et al.  Utilization of automatic differentiation in control algorithms , 1994, IEEE Trans. Autom. Control..

[11]  Stephen L. Campbell,et al.  Completions of nonlinear DAE flows based on index reduction techniques and their stabilization , 2009, J. Comput. Appl. Math..

[12]  S. Campbell High-Index Differential Algebraic Equations , 1995 .

[13]  B. Anderson,et al.  NEW RESULTS IN LINEAR SYSTEM STABILITY , 1969 .

[14]  Markus Mueller,et al.  Time-Varying Linear Systems: Relative Degree and Normal Form , 2007, IEEE Transactions on Automatic Control.

[15]  Stephen L. Campbell,et al.  Observer Based Fault Detection and Identification in Differential Algebraic Equations , 2013 .

[16]  Damien Koenig,et al.  Unknown input proportional multiple-integral observer design for linear descriptor systems: application to state and fault estimation , 2005, IEEE Transactions on Automatic Control.

[17]  L. Silverman,et al.  Controllability and Observability in Time-Variable Linear Systems , 1967 .

[18]  D. N. Shields,et al.  Partial Singular-Value Assignment in the Design of Robust Observers for Discrete-Time Descriptor Systems , 1988 .

[19]  F. Lewis A survey of linear singular systems , 1986 .

[20]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[21]  C. Nguyen Design of reduced-order state estimators for linear time-varying multivariable systems , 1987 .

[22]  Carl Tim Kelley,et al.  Consistent initial conditions for unstructured higher index DAES: a computational study , 1996 .

[23]  François Delebecque,et al.  Numerically constructible observers for linear time-varying descriptor systems , 2001, Autom..

[24]  M. Boutayeb,et al.  Design of observers for descriptor systems , 1995, IEEE Trans. Autom. Control..

[25]  D. Hill,et al.  Stability theory for differential/algebraic systems with application to power systems , 1990 .

[26]  C. D. Meyer,et al.  Generalized inverses of linear transformations , 1979 .

[27]  Yuh Yamashita,et al.  Observer based I/O-linearizing control of high index DAE systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[28]  V. Mehrmann,et al.  Smooth factorizations of matrix valued functions and their derivatives , 1991 .

[29]  Gyan C. Agarwal,et al.  Linear Control Systems: With Solved Problems and MATLAB Examples , 2001 .

[30]  B. Shafai,et al.  Minimal order observer design for linear time varying multivariable systems , 1984, The 23rd IEEE Conference on Decision and Control.

[31]  Chika O. Nwankpa,et al.  ADDRESSING NONLINEAR OBSERVABILITY ISSUES IN POWER SYSTEMS , 2002 .

[32]  Ricardo Riaza,et al.  Linear differential-algebraic equations with properly stated leading term: Regular points☆ , 2006 .

[33]  G. Zimmer,et al.  On observ-ing nonlinear descriptor systems , 1997 .

[34]  Paul Van Dooren Reduced order observers: A new algorithm and proof , 1984 .

[35]  Karen Bobinyec Observer Construction for Systems of Differential Algebraic Equations using Completions , 2013 .

[36]  Peter C. Müller,et al.  Observer design for descriptor systems , 1999, IEEE Trans. Autom. Control..

[37]  Stephen L. Campbell,et al.  Observer Design for General Linear Time-invariant Systems , 1998, Autom..

[38]  M. Darouach,et al.  Reduced-order observer design for descriptor systems with unknown inputs , 1996, IEEE Trans. Autom. Control..

[39]  N. K. Loh,et al.  Design of minimal-order state observers for time-varying multivariable systems , 1992 .

[40]  Design of Generalized PI Observers for Descriptor Linear Systems , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  S. Campbell,et al.  Eigenvalue placement in completions of DAES , 2013 .

[42]  Ricardo Riaza,et al.  Differential-Algebraic Systems: Analytical Aspects and Circuit Applications , 2008 .

[43]  K. Clark A structural form for higher-index semistate equations. I. theory and applications to circuit and control theory , 1988 .

[44]  Fei Hao,et al.  Full-order Observer Design for Descriptor Systems with Delayed State and Unknown Inputs , 2006, 2006 Chinese Control Conference.

[45]  T. Berger,et al.  Hamburger Beiträge zur Angewandten Mathematik Controllability of linear differential-algebraic systems-A survey , 2012 .

[46]  I. Batarseh,et al.  Time-varying current observer with parameter estimation for multiphase low-voltage high-current voltage regulator modules , 2003, Eighteenth Annual IEEE Applied Power Electronics Conference and Exposition, 2003. APEC '03..

[47]  P. Kabamba,et al.  Observation and Estimation in Linear Descriptor Systems With Application to Constrained Dynamical Systems , 1988 .

[48]  R. Carroll,et al.  Design of a minimal-order observer for singular systems , 1987 .

[49]  Volker Mehrmann,et al.  A Behavioral Approach to Time-Varying Linear Systems. Part 2: Descriptor Systems , 2005, SIAM J. Control. Optim..

[50]  R. Nikoukhah,et al.  Observer Design for Linear Time Varying Descriptor Systems , 1997 .

[51]  P. Dooren,et al.  A reduced order observer for descriptor systems , 1986 .

[52]  V. Mehrmann,et al.  Canonical forms for linear differential-algebraic equations with variable coefficients , 1994 .

[53]  V.C. LeFevre,et al.  The design and implementation of a time-varying observer and an EMA controller for linear systems , 1997, Proceedings The Twenty-Ninth Southeastern Symposium on System Theory.

[54]  S. Campbell,et al.  The additional dynamics of least squares completions for linear differential algebraic equations , 2007 .

[55]  Panos J. Antsaklis,et al.  Linear Systems , 1997 .

[56]  G. D. Byrne,et al.  Differential-algebraic systems, their applications and solutions , 1988 .

[57]  W. J. Terrell,et al.  Duality, observability, and controllability for linear time-varying descriptor systems , 1991 .

[58]  F. R. Gantmakher The Theory of Matrices , 1984 .

[59]  John O'Reilly,et al.  Observers for Linear Systems , 1983 .

[60]  S. Campbell,et al.  Observability of linear time-varying descriptor systems , 1991 .

[61]  Bernard Friedland,et al.  A nonlinear observer for estimating parameters in dynamic systems , 1997, Autom..

[62]  William J. Terrell The Output-Nulling Space, Projected Dynamics, and System Decomposition for Linear Time-Varying Singular Systems , 1994 .

[63]  Stephen L. Campbell,et al.  Observer based fault detection in differential algebraic equations , 2013, SIAM Conf. on Control and its Applications.

[64]  S. Campbell Local realizations of time varying descriptor systems , 1987, 26th IEEE Conference on Decision and Control.

[65]  François Delebecque,et al.  Observer design for linear time varying descriptor systems: numerical algorithms , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[66]  S. Campbell Index two linear time varying singular systems of differential equations , 1986 .

[67]  Werner C. Rheinboldt,et al.  Nonholonomic motion of rigid mechanical systems from a DAE viewpoint , 1987 .

[68]  Stephen L. Campbell,et al.  Least squares completions for nonlinear differential algebraic equations , 1993 .

[69]  Johann Reger,et al.  On algebraic time-derivative estimation and deadbeat state reconstruction , 2007, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[70]  Volker Mehrmann,et al.  Regular solutions of nonlinear differential-algebraic equations and their numerical determination , 1998 .

[71]  David G. Luenberger,et al.  Time-invariant descriptor systems , 1978, Autom..

[72]  Stephen L. Campbell,et al.  Maximally reduced observers for linear time varying DAEs , 2011, 2011 IEEE International Symposium on Computer-Aided Control System Design (CACSD).

[73]  R. E. Kalman,et al.  New Results in Linear Filtering and Prediction Theory , 1961 .

[74]  Qinghua Zhang,et al.  Fault detection and isolation based on adaptive observers for linear time varying systems , 2002 .

[75]  R. Mukundan,et al.  On the design of observers for generalized state space systems using singular value decomposition , 1983 .

[76]  A. Stubberud,et al.  Canonical forms for multiple-input time-variable systems , 1969 .

[77]  W. Rheinboldt On the computation of multi-dimensional solution manifolds of parametrized equations , 1988 .

[78]  J. Baumgarte Stabilization of constraints and integrals of motion in dynamical systems , 1972 .

[79]  J. Bay Fundamentals of Linear State Space Systems , 1998 .

[80]  Linda R. Petzold,et al.  Consistent Initial Condition Calculation for Differential-Algebraic Systems , 1998, SIAM J. Sci. Comput..

[81]  L. Dai,et al.  Singular Control Systems , 1989, Lecture Notes in Control and Information Sciences.

[82]  Stephen L. Campbell,et al.  Constructing observers for linear time varying DAEs , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[83]  J. O'Reilly,et al.  Observers for descriptor systems , 1989 .

[84]  Tianyou Chai,et al.  Observer design for a class of nonlinear descriptor systems , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[85]  Volker Mehrmann,et al.  A New Software Package for Linear Differential-Algebraic Equations , 1997, SIAM J. Sci. Comput..

[86]  A. Berman Generalized Inverses of Linear Transformations (S. L. Campbell and C. D. Meyer, Jr.) , 1981 .

[87]  Saïd Mammar,et al.  Design of proportional-integral observer for unknown input descriptor systems , 2002, IEEE Trans. Autom. Control..

[88]  B. Anderson,et al.  Detectability and Stabilizability of Time-Varying Discrete-Time Linear Systems , 1981 .

[89]  J. Evard On the existence of bases of class Cp of the kernel and the image of a matrix function , 1990 .

[90]  Maria Letizia Corradini,et al.  Robust FDI filters and fault sensitivity analysis in continuous-time descriptor systems , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[91]  W. Terrell Observability of nonlinear differential algebraic systems , 1997 .

[92]  Patrizio Colaneri,et al.  The extended periodic lyapunov lemma , 1985, Autom..

[93]  Stephen L. Campbell,et al.  A general form for solvable linear time varying singular systems of differential equations , 1987 .

[94]  Driss Boutat,et al.  Observers design for a class of nonlinear singular systems , 2011, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[95]  W. Blajer Index of differential-algebraic equations governing the dynamics of constrained mechanical systems , 1992 .

[96]  Stephen L. Campbell,et al.  Completions of implicitly defined linear time varying vector fields , 2009 .

[97]  G. Reissig The index of the standard circuit equations of passive RLCTG-networks does not exceed 2 , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[98]  Volker Mehrmann,et al.  A New Class of Discretization Methods for the Solution of Linear Differential-Algebraic Equations with Variable Coefficients , 1996 .

[99]  Xiaobo Li,et al.  A time domain approach to robust fault detection of linear time-varying systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[100]  V. Sundarapandian,et al.  Reduced order observer design for discrete-time nonlinear systems , 2006, Appl. Math. Lett..

[101]  C. W. Gear,et al.  Approximation methods for the consistent initialization of differential-algebraic equations , 1988 .

[102]  Marios M. Polycarpou,et al.  Fault diagnosis of differential-algebraic systems , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[103]  Rangaswamy Mukundan,et al.  Correction to "On the application of matrix generalized inverses to the design of observers for time-varying and time-invariant linear systems" , 1980 .

[104]  Volker Mehrmann,et al.  Chapter 2: Regularization of Linear and Nonlinear Descriptor Systems , 2012 .

[105]  Min-Yen Wu,et al.  A note on stability of linear time-varying systems , 1974 .

[106]  R. Carroll,et al.  Design of proportional-integral observer for linear time-varying multivariable systems , 1985, 1985 24th IEEE Conference on Decision and Control.

[107]  Raymond T. Stefani,et al.  Design of feedback control systems , 1982 .

[108]  Stephen L. Campbell,et al.  Automatic Differentiation and Implicit Differential Equations , 1999 .

[109]  Stephen L. Campbell,et al.  Mixed symbolic–numerical computations with general DAEs I: System properties , 2004, Numerical Algorithms.

[110]  Zhiwei Gao,et al.  Descriptor observer approaches for multivariable systems with measurement noises and application in fault detection and diagnosis , 2006, Syst. Control. Lett..

[111]  Huei Peng,et al.  Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems , 2002 .

[112]  G. Johnson On a deterministic theory of estimation and control , 1969 .

[113]  Peter C. Müller,et al.  Normal Form and Luenberger Observer for Linear Mechanical Descriptor Systems , 1993 .

[114]  Franco Blanchini,et al.  Eigenvalue assignment via state observer for descriptor systems , 1991, Kybernetika.

[115]  Heng-Ming Tai,et al.  Equivalent characterizations of detectability and stabilizability for a class of linear time-varying systems , 1987 .

[116]  Stephen L. Campbell,et al.  Direct transcription solution of high index optimal control problems and regular Euler-Lagrange equations , 2007 .

[117]  Chi-Jo Wang Controllability and observability of linear time varying singular systems , 1999, IEEE Trans. Autom. Control..

[118]  Achim Ilchmann,et al.  Zero dynamics of time-varying linear systems , 2010 .

[119]  Nariyasu Minamide,et al.  Design of observers for descriptor systems using a descriptor standard form , 1989 .

[120]  Erik Frisk,et al.  An observer for non-linear differential-algebraic systems , 2006, Autom..

[121]  J. Bongiorno,et al.  Observers for linear multivariable systems with applications , 1971 .

[122]  R. Lamour Index determination and calculationof consistent initial values for DAEs , 2005 .

[123]  R. Newcomb The semistate description of nonlinear time-variable circuits , 1981 .

[124]  Stephen L. Campbell,et al.  Full order observers for linear DAEs , 2011, IEEE Conference on Decision and Control and European Control Conference.

[125]  Paul Van Dooren,et al.  Estimating Gramians of Large-Scale Time-Varying Systems , 2002 .

[126]  Linda R. Petzold,et al.  Numerical solution of initial-value problems in differential-algebraic equations , 1996, Classics in applied mathematics.

[127]  Sophie Tarbouriech,et al.  Necessary and sufficient numerical conditions for asymptotic stability of linear time-varying systems , 2008, 2008 47th IEEE Conference on Decision and Control.

[128]  Aneel Tanwani,et al.  On observability of switched differential-algebraic equations , 2010, 49th IEEE Conference on Decision and Control (CDC).

[129]  Stephen L. Campbell,et al.  Direct transcription solution of higher-index optimal control problems and the virtual index , 2007 .

[130]  Robert W. Newcomb,et al.  Some circuits and systems applications of semistate theory , 1989 .

[131]  S. Campbell,et al.  Differentiation of Constraints in Differential-Algebraic Equations∗ , 1991 .

[132]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[133]  François Delebecque,et al.  Nonlinear observer design using implicit system descriptions , 1996 .

[134]  Cuong M. Nguyen,et al.  Design of a state estimator for a class of time-varying multivariable systems , 1985, IEEE Transactions on Automatic Control.

[135]  P. Daoutidis,et al.  Control of nonlinear differential algebraic equation systems , 1999 .

[136]  M. M. Newmann,et al.  Minimal-order observer-estimators for continuous-time linear systems , 1975 .

[137]  H. Tai Linear time-varying systems: Algebraic structure, system properties and control , 1987 .

[138]  B. Leimkuhler,et al.  Numerical solution of differential-algebraic equations for constrained mechanical motion , 1991 .

[139]  D. Luenberger Observers for multivariable systems , 1966 .

[140]  M. Fliess,et al.  Implicit differential equations and Lie-Backlund mappings , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[141]  Pierre Rouchon,et al.  Index of an implicit time-varying linear differential equation: a noncommutative linear algebraic approach , 1993 .

[142]  Stephen L. Campbell,et al.  Solvability of General Differential Algebraic Equations , 1995, SIAM J. Sci. Comput..

[143]  René Lamour,et al.  Differential-Algebraic Equations: A Projector Based Analysis , 2013 .

[144]  Cédric Join,et al.  Non-linear estimation is easy , 2007, Int. J. Model. Identif. Control..