SVM을 이용한 차량 번호판 위치 추출
暂无分享,去创建一个
본 논문에서는 SVM을 이용한 번호판 위치 추출 알고리즘을 제안한다. 일반적으로 번호판 영역은 가로-세로 비율 컬러, 공간 주파수 성분 등의 특징을 포함하고 있다. 제안하는 기법은 영상 획득, 번호판 후보 영역 추출, 번호란 위치 검증 세가지 단계로 구성되어 있다. 번호판 후보 영역 추출 단계에서는 컬러 필터링과 경계선 검출을 하여 번호판 후보 영역을 찾아내고 후보 영역의 DCT 계수를 SVM에 적용하여 검증한다. 이러한 검증과정을 거침으로써 잘못된 추출을 막아 신뢰성 있는 번호판 영역 추출이 가능하다. 실험을 통해 제안한 방법을 검증하였다. 【In this paper, we propose a license plate locating algorithm by using SVM. Tipically, the features regarding license plate format include height-to-width ratio, color, and spatial frequency. The method is dived into three steps which are image acquisition, detecting license plate candidate regions, verifying the license plate accurately. In the course of detecting license plate candidate regions, color filtering and edge detecting are performed to detect candidate regions, and then verify candidate region using Support Vector Machines(SVM) with DCT coefficients of candidates. It is possible to perform reliable license plate location bemuse we can protect false detection through these verification process. We validate our approach with experimental results.】
[1] Gunnar Rätsch,et al. An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.
[2] Sei-Wang Chen,et al. Automatic license plate recognition , 2004, IEEE Transactions on Intelligent Transportation Systems.