Lattice-based dynamic and overlapping taxonomies: The case of epistemic communities

SummaryWe present a method for describing taxonomy evolution. We focus on the structure of epistemic communities (ECs), or groups of agents sharing common knowledge concerns. Introducing a formal framework based on Galois lattices, we categorize ECs in an automated and hierarchically structured way and propose criteria for selecting the most relevant epistemic communities - for instance, ECs gathering a certain proportion of agents and thus prototypical of major fields. This process produces a manageable, insightful taxonomy of the community. Then, the longitudinal study of these static pictures makes possible an historical description. In particular, we capture stylized facts such as field progress, decline, specialization, interaction (merging or splitting), and paradigm emergence. The detection of such patterns in epistemic networks could fruitfully be applied to other contexts.

[1]  S. C. Johnson Hierarchical clustering schemes , 1967, Psychometrika.

[2]  Radim Bělohlávek,et al.  Fuzzy galois connections and fuzzy concept lattices: from binary relations to conceptual structures , 2000 .

[3]  Olivier Ridoux,et al.  A File System Based on Concept Analysis , 2000, Computational Logic.

[4]  E. Rosch,et al.  Cognition and Categorization , 1980 .

[5]  June M. Verner,et al.  The use of bibliometric and knowledge elicitation techniques to map a knowledge domain: Software Engineering in the 1990s , 2005, Scientometrics.

[6]  Rokia Missaoui,et al.  Design of Class Hierarchies Based on Concept (Galois) Lattices , 1998, Theory Pract. Object Syst..

[7]  M. V. Velzen,et al.  Self-organizing maps , 2007 .

[8]  R. Sokal,et al.  Principles of numerical taxonomy , 1965 .

[9]  StummeGerd,et al.  Computing iceberg concept lattices with TITANIC , 2002 .

[10]  R. Whittaker New concepts of kingdoms of organisms , 1969 .

[11]  Loet Leydesdorff,et al.  In Search of Epistemic Networks , 1991 .

[12]  Paul A. David,et al.  The explicit economics of knowledge codification and tacitness , 2000 .

[13]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[14]  Vincent Duquenne,et al.  Structuration of phenotypes and genotypes through galois lattices and implications , 2003, Appl. Artif. Intell..

[15]  Loet Leydesdorff,et al.  Why Words and Co-Words Cannot Map the Development of the Sciences , 1997, J. Am. Soc. Inf. Sci..

[16]  J. Klein,et al.  Interdisciplinarity: History, Theory, and Practice. , 1991 .

[17]  M. Callon,et al.  Mapping the Dynamics of Science and Technology , 1986 .

[18]  Lc Freeman,et al.  USING GALOIS LATTICES TO REPRESENT NETWORK DATA , 1993 .

[19]  H. White,et al.  “Structural Equivalence of Individuals in Social Networks” , 2022, The SAGE Encyclopedia of Research Design.

[20]  K. McCain Cocited author mapping as a valid representation of intellectual structure , 1986 .

[21]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[22]  Vladimir Batagelj,et al.  Generalized blockmodeling of two-mode network data , 2004, Soc. Networks.

[23]  Henry Kreuzman A co-citation analysis of representative authors in philosophy: Examining the relationship between epistemologists and philosophers of science , 2001, Scientometrics.

[24]  Edward E. Smith,et al.  The Tree of Life: Universal and Cultural Features of Folkbiological Taxonomies and Inductions , 1997, Cognitive Psychology.

[25]  S. Boorman,et al.  Social structure from multiple networks: I , 1976 .

[26]  J. Bradbury,et al.  Small Fish, Big Science , 2004, PLoS biology.

[27]  魏屹东,et al.  Scientometrics , 2018, Encyclopedia of Big Data.

[28]  Bernard Monjardet,et al.  The presence of lattice theory in discrete problems of mathematical social sciences. Why , 2003, Math. Soc. Sci..

[29]  H. Prauser,et al.  Robert R. Sokal und Peter H. A. Sneath, Principles of Numerical Taxonomy 1. Aufl. XVI, 359 S., 38 Abb., 21 Tab. San Francisco and London 1963: W. H. Freeman and Company 60 s , 1966 .

[30]  Patrick Cohendet,et al.  Organisational Innovation, Communities of Practice and Epistemic Communities: the Case of Linux , 2001 .

[31]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[32]  B. Berlin,et al.  Ethnobiological Classification: Principles of Categorization of Plants and Animals in Traditional Societies. , 1994 .

[33]  Loet Leydesdorff,et al.  The static and dynamic analysis of network data using information theory , 1991 .

[34]  Ron Atkin,et al.  Mathematical structure in human affairs , 1976 .

[35]  Ed C. M. Noyons,et al.  Monitoring scientific developments from a dynamic perspective: self-organized structuring to map neural network research , 1998 .

[36]  J. Desclés,et al.  Logique et dynamique de la cognition , 1996 .

[37]  Gerd Stumme,et al.  Computing iceberg concept lattices with T , 2002, Data Knowl. Eng..

[38]  S. Boorman,et al.  Social Structure from Multiple Networks. I. Blockmodels of Roles and Positions , 1976, American Journal of Sociology.

[39]  Marianne Huchard,et al.  ARES, Adding a class and REStructuring Inheritance Hierarchy , 1995, BDA.

[40]  Loet Leydesdorff Why words and co‐words cannot map the development of the sciences , 1997 .

[41]  Jean-Benoît Zimmermann,et al.  Émergence, formation et dynamique des réseaux. Modèles de la morphogenèse , 2003 .

[42]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[43]  Teuvo Kohonen,et al.  Self-Organizing Maps , 2010 .

[44]  L. Zon,et al.  Zebrafish: a model system for the study of human disease. , 2000, Current opinion in genetics & development.

[45]  S. Boorman,et al.  Social Structure from Multiple Networks. II. Role Structures , 1976, American Journal of Sociology.

[46]  Henry Kreuzman,et al.  A co-citation analysis of representative authors in philosophy: Examining the relationship between epistemologists and philosophers of science , 2004, Scientometrics.

[47]  R. Wille Concept lattices and conceptual knowledge systems , 1992 .

[48]  Julie Thompson Klein,et al.  Interdisciplinarity: History, theory, and practice. , 1992 .

[49]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[50]  Mark Newman,et al.  Detecting community structure in networks , 2004 .

[51]  Olle Persson,et al.  Locating the network of interacting authors in scientific specialties , 1995, Scientometrics.

[52]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[53]  John Scott What is social network analysis , 2010 .

[54]  Paul Bourgine,et al.  Epistemic Communities: Description and Hierarchic Categorization , 2004, ArXiv.

[55]  Anthony F. J. van Raan,et al.  Monitoring Scientific Developments from a Dynamic Perspective: Self-Organized Structuring to Map Neural Network Research , 1998, Journal of the American Society for Information Science.

[56]  Sergei O. Kuznetsov,et al.  Comparing performance of algorithms for generating concept lattices , 2002, J. Exp. Theor. Artif. Intell..

[57]  Nancy Ide,et al.  Introduction to the Special Issue on Word Sense Disambiguation: The State of the Art , 1998, Comput. Linguistics.

[58]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994 .

[59]  Derrick G. Kourie,et al.  Compressed pseudo-lattices , 2002, J. Exp. Theor. Artif. Intell..

[60]  P. Haas Introduction: epistemic communities and international policy coordination , 1992, International Organization.

[61]  J. Eisen,et al.  Headwaters of the zebrafish — emergence of a new model vertebrate , 2002, Nature Reviews Genetics.

[62]  Giovanni Maria Sacco,et al.  Dynamic Taxonomies: A Model for Large Information Bases , 2000, IEEE Trans. Knowl. Data Eng..

[63]  T. Kuhn,et al.  The Structure of Scientific Revolutions. , 1964 .