A lumped parameter method in the nonlinear analysis of flexible multibody systems

Abstract A lumped parameter method is presented in this paper. The method can be used in the nonlinear dynamic analysis of a flexible multibody system. The geometrical nonlinearity of a flexible body is shown to be automatically included in the governing dynamic equations. This lumped parameter method is called the finite segment method. The elastic parameters between two adjacent segments are evaluated. For straight and tapered segments, these parameters are listed in tables in the Appendix for quick and easy reference. To describe the topology of a multibody system a configuration matrix is introduced. The matrix can be generated from lower body array automatically by a FORTRAN subroutine presented in this paper in order to avoid the tedious manual derivation of the configuration matrix. To show the validation of the method an example is presented. The numerical results are favorably compared with analytical results. Since the geometrical nonlinearity of the flexible body is shown to be automatically included, the dynamic stiffening due to the overall nonlinear dynamic motion is automatically captured.

[1]  David Allen Turcic,et al.  Dynamic Analysis of Elastic Mechanism Systems. Part I: Applications , 1984 .

[2]  F. Amirouche,et al.  Dynamics of Large Constrained Flexible Structures , 1988 .

[3]  T. R. Kane,et al.  Dynamics of a cantilever beam attached to a moving base , 1987 .

[4]  N. Orlandea,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 2 , 1977 .

[5]  R. G. Fenton,et al.  Finite element analysis of high-speed flexible mechanisms , 1981 .

[6]  A. Midha,et al.  Generalized Equations of Motion for the Dynamic Analysis of Elastic Mechanism Systems , 1984 .

[7]  E. M. Bakr,et al.  Geometrically nonlinear analysis of multibody systems , 1986 .

[8]  Thomas R. Kane,et al.  Formulation of Equations of Motion for Complex Spacecraft , 1980 .

[9]  R. Huston Multi-body dynamics including the effects of flexibility and compliance , 1981 .

[10]  A. Shabana On the use of the finite element method and classical approximation techniques in the non-linear dynamics of multibody systems , 1990 .

[11]  A. K. Banerjee,et al.  Multi-Flexible Body Dynamics Capturing Motion-Induced Stiffness , 1991 .

[12]  Ronald L. Huston,et al.  Computer methods in flexible multibody dynamics , 1991 .

[13]  G. G. Lowen,et al.  The elastic behavior of linkages: An update , 1986 .

[14]  A. Banerjee,et al.  Dynamics of an Arbitrary Flexible Body in Large Rotation and Translation , 1989 .

[15]  M. A. Chace,et al.  A Sparsity-Oriented Approach to the Dynamic Analysis and Design of Mechanical Systems—Part 1 , 1977 .

[16]  J. R. Bosnik,et al.  Dynamic Analysis of Elastic Mechanism Systems. Part II: Experimental Results , 1984 .

[17]  G. N. Sandor,et al.  A Lumped Parameter Approach to Vibration and Stress Analysis of Elastic Linkages , 1973 .

[18]  Steven Dubowsky,et al.  The Application of Finite Element Methods to the Dynamic Analysis of Flexible Spatial and Co-Planar Linkage Systems , 1981 .

[19]  J. Wittenburg,et al.  Dynamics of systems of rigid bodies , 1977 .

[20]  A. Shabana,et al.  A Coordinate Reduction Technique for Dynamic Analysis of Spatial Substructures with Large Angular Rotations , 1983 .

[21]  A. V. Flotow,et al.  Nonlinear strain-displacement relations and flexible multibody dynamics , 1992 .

[22]  R. P. Han,et al.  Dynamics of general flexible multibody systems , 1990 .

[23]  Ronald L. Huston,et al.  Computing angular velocity in multibody systems , 1986 .

[24]  R. Huston,et al.  On multi-rigid-body system dynamics , 1979 .

[25]  Arun K. Banerjee Order-n formulation of extrusion of a beam with large bending and rotation , 1992 .

[26]  Ronald L. Huston,et al.  Validation of finite segment cable models , 1982 .

[27]  R. Nadira,et al.  A Finite Element/Lagrange Approach to Modeling Lightweight Flexible Manipulators , 1986 .

[28]  Ahmed A. Shabana,et al.  Dynamics of Multibody Systems , 2020 .

[29]  Thomas R. Kane,et al.  Dynamics of a beam moving over supports , 1985 .

[30]  Thomas R. Kane,et al.  THEORY AND APPLICATIONS , 1984 .

[31]  J. O. Song,et al.  Dynamic analysis of planar flexible mechanisms , 1980 .

[32]  M. L. Amirouche Dynamic analysis of ‘tree-like’ structures undergoing large motions — a finite segment approach , 1986 .

[33]  J. Sadler On the Analytical Lumped-Mass Model of an Elastic Four-Bar Mechanism , 1975 .

[34]  F. M. L. Amirouche Flexibility Effects—Estimation of the Stiffness Matrix in the Dynamics of a Large Structure , 1987 .

[35]  Ronald L. Huston,et al.  Multibody Dynamics — Modeling and Analysis Methods , 1991 .

[36]  Ronald L. Huston,et al.  Dynamic Analysis of Elastic Beam-Like Mechanism Systems , 1989 .

[37]  Ronald L. Huston,et al.  Computational methods in constrained multibody dynamics: matrix formalisms , 1988 .

[38]  R. Huston,et al.  Cable dynamics—a finite segment approach , 1976 .

[39]  A. Shabana,et al.  Nonlinear Finite Element Formulation for the Large Displacement Analysis of Plates , 1990 .