Optimal Bayesian feature selection with missing data

We present a framework for optimal Bayesian feature selection and missing value estimation. Based on this framework, we derive optimal algorithms under an independent Gaussian model, and provide fast sub-optimal methods with superb performance for a dependent Gaussian model.

[1]  Lígia P. Brás,et al.  Improving cluster-based missing value estimation of DNA microarray data. , 2007, Biomolecular engineering.

[2]  Le Song,et al.  Feature Selection via Dependence Maximization , 2012, J. Mach. Learn. Res..

[3]  Lori A. Dalton,et al.  Optimal bayesian feature filtering , 2015, BCB.

[4]  Ulisses Braga-Neto,et al.  Bolstered error estimation , 2004, Pattern Recognit..

[5]  Russ B. Altman,et al.  Missing value estimation methods for DNA microarrays , 2001, Bioinform..

[6]  Lori A. Dalton Optimal Bayesian feature selection , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[7]  References , 1971 .

[8]  Aníbal R. Figueiras-Vidal,et al.  Pattern classification with missing data: a review , 2010, Neural Computing and Applications.

[9]  Edward R. Dougherty,et al.  Impact of Missing Value Imputation on Classification for DNA Microarray Gene Expression Data—A Model-Based Study , 2010, EURASIP J. Bioinform. Syst. Biol..

[10]  Russell V. Lenth,et al.  Statistical Analysis With Missing Data (2nd ed.) (Book) , 2004 .

[11]  Nicole A. Lazar,et al.  Statistical Analysis With Missing Data , 2003, Technometrics.

[12]  Lori A. Dalton,et al.  Optimal Bayesian feature selection on high dimensional gene expression data , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[13]  Ivan G. Costa,et al.  Impact of missing data imputation methods on gene expression clustering and classification , 2015, BMC Bioinformatics.