Developing flow of a gas‐particle mixture in a vertical riser

The riser reactors used for the catalytic cracking of gas oil use a transported solid catalyst, and their performance can be predicted with confidence only if the physical mechanism that determines the cross-sectional distribution of the catalyst can be identified and modeled. A computational study of steady, developing flow of gas-particle suspensions in a vertical riser has been carried out, using a model based on kinetic theory of granular materials, to understand the role of inlet configuration on the pattern of flow development. Three inlet configurations - uniform inlet, core-annulus flow at the inlet and circumferential injection of secondary gas - were examined. It is found that the inlet configuration can have a profound impact on the rate of segregation of particles to the wall and the internal recirculation. Circumferential injection of gas has a favorable effect on the flow in the sense that it can decrease the extent of internal recirculation.