Near room-temperature IR photo-detectors

[1]  W. Tennant,et al.  Isothermal vapor‐phase epitaxy of Hg1−xCdxTe on CdTe and Al2O3 substrates , 1985 .

[2]  J. Pawlikowski Application of epitaxial graded-gap semiconductor layers as broad range photodetectors , 1978 .

[3]  F. Perry,et al.  High-speed room-temperature HgCdTe CO2-laser detectors , 1984 .

[4]  C. Su,et al.  Growth of HgZnTe alloy crystals by directional solidification , 1988 .

[5]  R. F. Brebrick Thermodynamic modeling of the Hg-Cd-Te and Hg-Zn-Te systems , 1988 .

[6]  A. Sher,et al.  Mercury zinc telluride, a new narrow‐gap semiconductor , 1985 .

[7]  Z. Djinovic,et al.  Composition and thickness control of CdxHg1-xTe layers grown by open tube isothermal vapour phase epitaxy , 1987 .

[8]  J. Piotrowski,et al.  ZnHgTe as a material for ambient temperature 10.6 μm photodetectors , 1989 .

[9]  W. Anderson,et al.  Absorption constant of Pb1−xSnxTe and Hg1−xCdxTe alloys☆ , 1980 .

[10]  J. Piotrowski,et al.  Growth of HgZnTe by cast-recrystallization , 1988 .

[11]  R. Galazka Physics and applications of II-VI semimagnetics , 1985 .

[12]  A. M. White,et al.  The characteristics of minority-carrier exclusion in narrow direct gap semiconductors , 1985 .

[13]  C. T. Elliott Cadmium mercury telluride infrared detectors , 1985 .

[14]  K. J. Riley,et al.  Background and temperature dependent current‐voltage characteristics of HgCdTe photodiodes , 1982 .

[15]  J. Schmit Growth, properties and applications of HgCdTe , 1983 .

[16]  J. Piotrowski,et al.  High-temperature 10.6 μm HgZnTe photodetectors , 1989 .

[17]  P. Capper,et al.  Substrate orientation effects in CdxHg1−xTe grown by MOVPE , 1989 .

[18]  E. Płaczek-Popko,et al.  Dark current in far-infrared Hg(1−x−y)CdxMnyTe Detectors , 1988 .

[19]  Antoni Rogalski,et al.  Intrinsic infrared detectors , 1988 .

[20]  J. Piotrowski,et al.  Mercury zinc telluride longwavelength high temperature photoconductors , 1990 .

[21]  Lindley T. Specht,et al.  High performance HgCdTe photoconductive devices grown by metalorganic chemical vapor deposition , 1986 .

[22]  J. Schmit,et al.  Calculation of intrinsic carrier concentration in Hg1−xCdxTe , 1983 .

[23]  A. White Negative resistance with Auger suppression in near-intrinsic, low-bandgap photo-diode structures , 1987 .

[24]  Z. Djinovic,et al.  Ambient temperature HgCdTe photoconductor can achieve detectivity higher than 1*10/sup 8/ cm Hz/sup 1/2//W at 10.6 mu m , 1988 .

[25]  R. Triboulet,et al.  Growth and characterization of bulk HgZnTe crystals , 1986 .

[26]  J. Piotrowski,et al.  Uncooled photoconductive (Cd,Hg)Te detectors for the 8–14 μm region , 1979 .

[27]  A. Rogalski,et al.  Intrinsic carrier concentrations and effective masses in the potential infrared detector material, Hg1−xZnxTe , 1988 .

[28]  V. J. Mazurczyk,et al.  Chapter 5 (HgCd)Te Photoconductive Detectors , 1981 .

[29]  A. Rogalski,et al.  The performance of Hg1−xMnxTe photodiodes , 1989 .

[30]  A. Rogalski,et al.  Calculation of the carrier lifetime in Hg1−xZnxTe , 1988 .

[31]  Dennis K. Killinger,et al.  Optical and laser remote sensing , 1983 .

[32]  T. N. Casselman,et al.  Calculation of the Auger lifetime in p‐type Hg1‐xCdxTe , 1981 .

[33]  M. B. Reine,et al.  Chapter 6 Photovoltaic Infrared Detectors , 1981 .

[34]  A. M. White,et al.  Auger suppression and negative resistance in low gap PIN diode structures , 1986 .

[35]  M. Nowak,et al.  Interference photoelectromagnetic effect in graded-gap semiconductors , 1984 .

[36]  Y. Marfaing,et al.  Transport of photocarriers in CdxHg1−xTe graded-gap structures☆ , 1968 .

[37]  Zoran Djurić,et al.  Back side reflection influence on quantum efficiency of photovoltaic devices , 1988 .

[38]  T. Ashley,et al.  Nonequilibrium devices for infra-red detection , 1985 .

[39]  H. Holloway Quantum efficiencies of thin‐film IV‐VI semiconductor photodiodes , 1979 .

[40]  E. Finkman,et al.  The exponential optical absorption band tail of Hg1−xCdxTe , 1984 .

[41]  R. Triboulet,et al.  Solution hardening and dislocation density reduction in CdTe crystals by Zn addition , 1988 .

[42]  Christopher J. Summers,et al.  Computer modeling of carrier transport in (Hg,Cd)Te photodiodes , 1986 .

[43]  J. Schmit,et al.  Energy gap versus alloy composition and temperature in Hg1−xCdxTe , 1982 .

[44]  J. G. Pasko,et al.  Long and middle wavelength infrared photodiodes fabricated with Hg1−x CdxTe grown by molecular‐beam epitaxy , 1989 .

[45]  M. Pessa,et al.  Hg1−xCdxTe‐Hg1−yCdyTe (0≤x, y≤1) heterostructures: Properties, epitaxy, and applications , 1985 .

[46]  C. T. Elliott,et al.  Type conversion in CdxHg1-xTe by ion beam treatment , 1987 .

[47]  J. Piotrowski,et al.  Photoelectromagnetic effect in CdxHg1−xTe graded-gap structures , 1984 .

[48]  R. Triboulet (Hg,Zn)Te: A new material for IR detection , 1988 .

[49]  T. Ashley,et al.  Non-equilibrium modes of operation for infrared detectors , 1986 .

[50]  I. Kidron,et al.  Contact and bulk effects in intrinsic photoconductive infrared detectors , 1981 .

[51]  G. Karczewski,et al.  Photovoltaic effect and carrier transport mechanisms in Hg1-Mnxtdiodes , 1987 .

[52]  L. Chi,et al.  The theoretical calculation of the phase diagram of infrared detector materials (Hg, Zn)Te and (Cd, Zn)Te , 1989 .

[53]  P. Petersen Chapter 4 Auger Recombination in Mercury Cadmium Telluride , 1981 .