A statistical approach to target detection and localization in the presence of noise

The problem addressed in this paper is the combined detection and localization of a point reflector embedded in a medium by sensor array imaging when the array response matrix is obtained in a noisy environment. We consider additive measurement noise or a clutter noise in the multiple scattering regime. We study a detection test based on reverse-time migration of the array response matrix that is the most powerful for a given false alarm rate and compare it with a test based on the singular values of the response matrix. Moreover, we show that reflector localization should be performed with reverse-time migration rather than any other form of weighted-subspace migration and we give the standard deviation of the localization error.

[1]  Josselin Garnier,et al.  Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .

[2]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[3]  S. Péché The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.

[4]  L. Pastur On the spectrum of random matrices , 1972 .

[5]  G. Papanicolaou,et al.  Imaging and time reversal in random media , 2001 .

[6]  E. H. Linfoot Principles of Optics , 1961 .

[7]  C. Donati-Martin,et al.  The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.

[8]  Arnaud Derode,et al.  Random matrix theory applied to acoustic backscattering and imaging in complex media. , 2009, Physical review letters.

[9]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[10]  Mathias Fink,et al.  Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .

[11]  Coherent multiple scattering in disordered media , 2001, cond-mat/0104013.

[12]  A. Dembo,et al.  Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.

[13]  Habib Ammari,et al.  Asymptotic Imaging of Perfectly Conducting Cracks , 2010, SIAM J. Sci. Comput..

[14]  A. Gut Probability: A Graduate Course , 2005 .

[15]  Habib Ammari,et al.  Transient anomaly imaging by the acoustic radiation force , 2010 .

[16]  H. Lev-Ari,et al.  The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).

[17]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[18]  Jinho Baik,et al.  Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function , 2007, 0704.3636.

[19]  D. Féral,et al.  The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.

[20]  C. Donati-Martin,et al.  Central limit theorems for eigenvalues of deformations of Wigner matrices , 2009, 0903.4740.

[21]  R. Adler The Geometry of Random Fields , 2009 .

[22]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[23]  H. Ammari,et al.  Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .

[24]  Liliana Borcea,et al.  Edge Illumination and Imaging of Extended Reflectors , 2008, SIAM J. Imaging Sci..

[25]  Jack K. Cohen,et al.  Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .

[26]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[27]  Arnaud Derode,et al.  Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration , 2009, 0906.0532.

[28]  A.J. Devaney Time reversal imaging of obscured targets from multistatic data , 2005, IEEE Transactions on Antennas and Propagation.

[29]  S. Popoff,et al.  Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.

[30]  Josselin Garnier,et al.  Imaging Schemes for Perfectly Conducting Cracks , 2011, SIAM J. Appl. Math..

[31]  M. Stephanov,et al.  Random Matrices , 2005, hep-ph/0509286.

[32]  A. Derode,et al.  Singular value distribution of the propagation matrix in random scattering media , 2009, 0904.0161.

[33]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.