A statistical approach to target detection and localization in the presence of noise
暂无分享,去创建一个
[1] Josselin Garnier,et al. Wave Propagation and Time Reversal in Randomly Layered Media , 2007 .
[2] G. Casella,et al. Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.
[3] S. Péché. The largest eigenvalue of small rank perturbations of Hermitian random matrices , 2004, math/0411487.
[4] L. Pastur. On the spectrum of random matrices , 1972 .
[5] G. Papanicolaou,et al. Imaging and time reversal in random media , 2001 .
[6] E. H. Linfoot. Principles of Optics , 1961 .
[7] C. Donati-Martin,et al. The largest eigenvalues of finite rank deformation of large Wigner matrices: Convergence and nonuniversality of the fluctuations. , 2007, 0706.0136.
[8] Arnaud Derode,et al. Random matrix theory applied to acoustic backscattering and imaging in complex media. , 2009, Physical review letters.
[9] R. Adler,et al. The Geometry of Random Fields , 1982 .
[10] Mathias Fink,et al. Decomposition of the time reversal operator: Detection and selective focusing on two scatterers , 1996 .
[11] Coherent multiple scattering in disordered media , 2001, cond-mat/0104013.
[12] A. Dembo,et al. Spectral measure of large random Hankel, Markov and Toeplitz matrices , 2003, math/0307330.
[13] Habib Ammari,et al. Asymptotic Imaging of Perfectly Conducting Cracks , 2010, SIAM J. Sci. Comput..
[14] A. Gut. Probability: A Graduate Course , 2005 .
[15] Habib Ammari,et al. Transient anomaly imaging by the acoustic radiation force , 2010 .
[16] H. Lev-Ari,et al. The time-reversal technique re-interpreted: subspace-based signal processing for multi-static target location , 2000, Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop. SAM 2000 (Cat. No.00EX410).
[17] Akira Ishimaru,et al. Wave propagation and scattering in random media , 1997 .
[18] Jinho Baik,et al. Asymptotics of Tracy-Widom Distributions and the Total Integral of a Painlevé II Function , 2007, 0704.3636.
[19] D. Féral,et al. The Largest Eigenvalue of Rank One Deformation of Large Wigner Matrices , 2006, math/0605624.
[20] C. Donati-Martin,et al. Central limit theorems for eigenvalues of deformations of Wigner matrices , 2009, 0903.4740.
[21] R. Adler. The Geometry of Random Fields , 2009 .
[22] R. Adler,et al. Random Fields and Geometry , 2007 .
[23] H. Ammari,et al. Reconstruction of Small Inhomogeneities from Boundary Measurements , 2005 .
[24] Liliana Borcea,et al. Edge Illumination and Imaging of Extended Reflectors , 2008, SIAM J. Imaging Sci..
[25] Jack K. Cohen,et al. Mathematics of Multidimensional Seismic Imaging, Migration, and Inversion , 2001 .
[26] K. Worsley,et al. Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.
[27] Arnaud Derode,et al. Detection and imaging in a random medium: A matrix method to overcome multiple scattering and aberration , 2009, 0906.0532.
[28] A.J. Devaney. Time reversal imaging of obscured targets from multistatic data , 2005, IEEE Transactions on Antennas and Propagation.
[29] S. Popoff,et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. , 2009, Physical review letters.
[30] Josselin Garnier,et al. Imaging Schemes for Perfectly Conducting Cracks , 2011, SIAM J. Appl. Math..
[31] M. Stephanov,et al. Random Matrices , 2005, hep-ph/0509286.
[32] A. Derode,et al. Singular value distribution of the propagation matrix in random scattering media , 2009, 0904.0161.
[33] George G. Lorentz,et al. Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.