Blood flow simulation through fractal models of circulatory system

[1]  David L. Cohn,et al.  OPTIMAL SYSTEMS: I. THE VASCULAR SYSTEM , 1954 .

[2]  D. L. Cohn Optimal systems: II. The vascular system , 1955 .

[3]  N. Suwa,et al.  Estimation of intravascular blood pressure gradient by mathematical analysis of arterial casts. , 1963, The Tohoku journal of experimental medicine.

[4]  諏訪 紀夫,et al.  Morphological and morphormetrical analysis of circulation in hypertension and ischemic kidney , 1971 .

[5]  M Zamir,et al.  The role of shear forces in arterial branching , 1976, The Journal of general physiology.

[6]  M Zamir,et al.  Optimality principles in arterial branching. , 1976, Journal of theoretical biology.

[7]  H. Uylings,et al.  Optimization of diameters and bifurcation angles in lung and vascular tree structures. , 1977, Bulletin of mathematical biology.

[8]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[9]  M Zamir,et al.  Arterial branching in various parts of the cardiovascular system. , 1982, The American journal of anatomy.

[10]  D E Lemons,et al.  Theory and experiment for the effect of vascular microstructure on surface tissue heat transfer--Part I: Anatomical foundation and model conceptualization. , 1984, Journal of biomechanical engineering.

[11]  M Zamir,et al.  Distributing and delivering vessels of the human heart , 1988, The Journal of general physiology.

[12]  A. Remuzzi,et al.  Numerical analysis of blood flow in reconstructed glomerular capillary segments. , 1995, Microvascular research.

[13]  W Schreiner,et al.  Structural quantification and bifurcation symmetry in arterial tree models generated by constrained constructive optimization. , 1996, Journal of theoretical biology.

[14]  A. Pries,et al.  Biophysical aspects of blood flow in the microvasculature. , 1996, Cardiovascular research.

[15]  A Kedzia,et al.  Fractal description of cerebellum surface during fetal period. , 1996, Folia morphologica.

[16]  James H. Brown,et al.  A General Model for the Origin of Allometric Scaling Laws in Biology , 1997, Science.

[17]  W Schreiner,et al.  Shear stress distribution in arterial tree models, generated by constrained constructive optimization. , 1999, Journal of theoretical biology.

[18]  C Cherniak,et al.  Modeling the large-scale geometry of human coronary arteries. , 2000, Canadian journal of physiology and pharmacology.

[19]  A Kedzia,et al.  The fractal analysis of subdural haematoma. , 2001, Folia neuropathologica.

[20]  J. Ahlqvist Atherosclerosis, and Newton, Poiseuille, Reynolds and Prandtl. , 2001, Medical hypotheses.

[21]  Ryszard Andrzejak,et al.  Fractal dimensions of human brain cortex vessels during the fetal period. , 2002, Medical science monitor : international medical journal of experimental and clinical research.

[22]  Marek Rybaczuk,et al.  Fractal characteristics of brain vessel microangioarchitecture during the fetal period. , 2002, Medical science monitor : international medical journal of experimental and clinical research.

[23]  Martin Neumann,et al.  Heterogeneous perfusion is a consequence of uniform shear stress in optimized arterial tree models. , 2003, Journal of theoretical biology.

[24]  Witold Dzwinel,et al.  A discrete-particle model of blood dynamics in capillary vessels. , 2003, Journal of colloid and interface science.

[25]  Alfio Quarteroni,et al.  Analysis of a Geometrical Multiscale Blood Flow Model Based on the Coupling of ODEs and Hyperbolic PDEs , 2005, Multiscale Model. Simul..

[26]  A. d’Onofrio Fractal growth of tumors and other cellular populations: Linking the mechanistic to the phenomenological modeling and vice versa , 2009, 1309.3329.