A Generalisation of Transversals for Latin Squares

We define a $k$-plex to be a partial latin square of order $n$ containing $kn$ entries such that exactly $k$ entries lie in each row and column and each of $n$ symbols occurs exactly $k$ times. A transversal of a latin square corresponds to the case $k=1$. For $k>n/4$ we prove that not all $k$-plexes are completable to latin squares. Certain latin squares, including the Cayley tables of many groups, are shown to contain no $(2c+1)$-plex for any integer $c$. However, Cayley tables of soluble groups have a $2c$-plex for each possible $c$. We conjecture that this is true for all latin squares and confirm this for orders $n\leq8$. Finally, we demonstrate the existence of indivisible $k$-plexes, meaning that they contain no $c$-plex for $1\leq c

[1]  Philippe Flajolet,et al.  The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..

[2]  Robert G. Rieper,et al.  Continued Fractions and Catalan Problems , 2000, Electron. J. Comb..

[3]  Diane Donovan,et al.  The completion of partial Latin squares , 2000, The Australasian Journal of Combinatorics.

[4]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[5]  C. Schensted Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.

[6]  Dennis Gilliland A Note on Orthogonal Partitions and Some Well-Known Structures in Design of Experiments , 1977 .

[7]  Christian Krattenthaler,et al.  Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..

[8]  L. Paige,et al.  Complete mappings of finite groups. , 1951 .

[9]  C. Colbourn,et al.  The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.

[10]  J. Dénes,et al.  Latin squares and their applications , 1974 .

[11]  D. J. Finney SOME ORTHOGONAL PROPERTIES OF THE 4 × 4 AND 6 × 6 LATIN SQUARES , 1943 .

[12]  Kendra Killpatrick,et al.  An Area-to-Inv Bijection Between Dyck Paths and 312-avoiding Permutations , 2001, Electron. J. Comb..

[13]  A. Rényi,et al.  On the height of trees , 1967, Journal of the Australian Mathematical Society.

[14]  A. D. Keedwell,et al.  Latin Squares: New Developments in the Theory and Applications , 1991 .

[15]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[16]  D. J. Finney ORTHOGONAL PARTITIONS OF THE 6times6 LATIN SQUARES , 1946 .

[17]  Ian M. Wanless,et al.  Latin Squares and the Hall–Paige Conjecture , 2003 .

[18]  de Ng Dick Bruijn,et al.  THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .

[19]  B. Logan,et al.  A Variational Problem for Random Young Tableaux , 1977 .