A Generalisation of Transversals for Latin Squares
暂无分享,去创建一个
[1] Philippe Flajolet,et al. The Average Height of Binary Trees and Other Simple Trees , 1982, J. Comput. Syst. Sci..
[2] Robert G. Rieper,et al. Continued Fractions and Catalan Problems , 2000, Electron. J. Comb..
[3] Diane Donovan,et al. The completion of partial Latin squares , 2000, The Australasian Journal of Combinatorics.
[4] Julian West,et al. Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..
[5] C. Schensted. Longest Increasing and Decreasing Subsequences , 1961, Canadian Journal of Mathematics.
[6] Dennis Gilliland. A Note on Orthogonal Partitions and Some Well-Known Structures in Design of Experiments , 1977 .
[7] Christian Krattenthaler,et al. Permutations with Restricted Patterns and Dyck Paths , 2000, Adv. Appl. Math..
[8] L. Paige,et al. Complete mappings of finite groups. , 1951 .
[9] C. Colbourn,et al. The CRC handbook of combinatorial designs , edited by Charles J. Colbourn and Jeffrey H. Dinitz. Pp. 784. $89.95. 1996. ISBN 0-8493-8948-8 (CRC). , 1997, The Mathematical Gazette.
[10] J. Dénes,et al. Latin squares and their applications , 1974 .
[11] D. J. Finney. SOME ORTHOGONAL PROPERTIES OF THE 4 × 4 AND 6 × 6 LATIN SQUARES , 1943 .
[12] Kendra Killpatrick,et al. An Area-to-Inv Bijection Between Dyck Paths and 312-avoiding Permutations , 2001, Electron. J. Comb..
[13] A. Rényi,et al. On the height of trees , 1967, Journal of the Australian Mathematical Society.
[14] A. D. Keedwell,et al. Latin Squares: New Developments in the Theory and Applications , 1991 .
[15] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[16] D. J. Finney. ORTHOGONAL PARTITIONS OF THE 6times6 LATIN SQUARES , 1946 .
[17] Ian M. Wanless,et al. Latin Squares and the Hall–Paige Conjecture , 2003 .
[18] de Ng Dick Bruijn,et al. THE AVERAGE HEIGHT OF PLANTED PLANE TREES , 1972 .
[19] B. Logan,et al. A Variational Problem for Random Young Tableaux , 1977 .