New hook length formulas for binary trees
暂无分享,去创建一个
[1] Seunghyun Seo. A Combinatorial Proof of Postnikov's Identity and a Generalized Enumeration of Labeled Trees , 2005, Electron. J. Comb..
[2] Fu Liu,et al. (k, m)-Catalan numbers and hook length polynomials for plane trees , 2007, Eur. J. Comb..
[3] William Y. C. Chen,et al. On Postnikov's hook length formula for binary trees , 2008, Eur. J. Comb..
[4] J. Moon. Postnikov Identities and Seo ’ s Formulas , 2006 .
[5] Laura L.M. Yang,et al. Generalizations of Han's Hook Length Identities , 2008, 0805.0109.
[6] R. Stanley. What Is Enumerative Combinatorics , 1986 .
[7] Ira M. Gessel,et al. A Refinement of Cayley's Formula for Trees , 2006, Electron. J. Comb..
[8] Guo-Niu Han. Discovering Hook Length Formulas by an Expansion Technique , 2008, Electron. J. Comb..
[9] Donald E. Knuth,et al. The art of computer programming: sorting and searching (volume 3) , 1973 .
[10] R. Stanley,et al. Enumerative Combinatorics: Index , 1999 .
[11] Bruce E. Sagan. PROBABILISTIC PROOFS OF HOOK LENGTH FORMULAS INVOLVING TREES , 2008 .
[12] Donald Ervin Knuth,et al. The Art of Computer Programming , 1968 .