Comparing the Fatigue and Corrosion Behavior of Nanograin and Coarse-Grain IF Steels

[1]  L. Du,et al.  Fabrication and Microstructural Control of Nano-structured Bulk Steels: A Review , 2014, Acta Metallurgica Sinica (English Letters).

[2]  K. Dehghani,et al.  Comparing the corrosion behavior of nanograined and coarse-grained interstitial free steels , 2013 .

[3]  K. Lu,et al.  Enhancing torsion fatigue behaviour of a martensitic stainless steel by generating gradient nanograined layer via surface mechanical grinding treatment , 2013 .

[4]  F. Karimzadeh,et al.  Tribological and microstructural evaluation of friction stir processed Al2024 alloy , 2010 .

[5]  K. Dehghani,et al.  Formation of nanograin in IF steels by friction stir processing , 2010 .

[6]  Jianqing Jiang,et al.  A simple technique of nanocrystallizing metallic surfaces for enhanced resistances to mechanical and electrochemical attacks , 2010 .

[7]  A. L. Ortiz,et al.  A direct comparison in the fatigue resistance enhanced by surface severe plastic deformation and shot peening in a C-2000 superalloy , 2010 .

[8]  A. Yazdipour,et al.  Modeling the microstructural evolution and effect of cooling rate on the nanograins formed during the friction stir processing of Al5083 , 2009 .

[9]  H. Lee,et al.  Influence of peening on the corrosion properties of AISI 304 stainless steel , 2009 .

[10]  V. Balasubramanian,et al.  Mechanical property and microstructural changes during friction stir processing of cast aluminum 2285 alloy , 2009 .

[11]  J. C. Huang,et al.  Producing nanograined microstructure in Mg–Al–Zn alloy by two-step friction stir processing , 2008 .

[12]  Y. Estrin,et al.  Microstructure and corrosion properties of ultrafine-grained interstitial free steel , 2007 .

[13]  Xu Zhang,et al.  The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal , 2007 .

[14]  V. Stolyarov,et al.  Corrosion resistance of ultra fine-grained Ti , 2004 .

[15]  Jian Lu,et al.  Diffusion of chromium in nanocrystalline iron produced by means of surface mechanical attrition treatment , 2003 .

[16]  Jian Lu,et al.  An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment , 2002 .

[17]  S. Fujimoto,et al.  Disorder and Structural Relaxation in Passive Films on Fe-Cr Alloys , 1995 .

[18]  G. E. Thompson,et al.  A scanning tunnelling microscopy study of structure and structural relaxation in passive oxide films on Fe-Cr alloys , 1994 .

[19]  Toshio Mura,et al.  A Dislocation Model for Fatigue Crack Initiation , 1981 .