Athena synergies in the multi-messenger and transient universe

[1]  S. Chakraborty,et al.  High energy particles from young supernovae: gamma-ray and neutrino connections , 2022, Journal of Cosmology and Astroparticle Physics.

[2]  A. J. Levan,et al.  The Gamow Explorer: a Gamma-Ray Burst Observatory to study the high redshift universe and enable multi-messenger astrophysics , 2021, Optical Engineering + Applications.

[3]  L. Pellizza,et al.  Exploring the physics behind the non-thermal emission from star-forming galaxies detected in gamma rays , 2021, Astronomy & Astrophysics.

[4]  M. J. Williams,et al.  Observation of Gravitational Waves from Two Neutron Star–Black Hole Coalescences , 2021 .

[5]  S. Paltani,et al.  Multi-messenger astrophysics with THESEUS in the 2030s , 2021, Experimental Astronomy.

[6]  K. Holley-Bockelmann,et al.  Gravitational-wave physics and astronomy in the 2020s and 2030s , 2021, Nature Reviews Physics.

[7]  M. Ruiz,et al.  Minidisk Dynamics in Accreting, Spinning Black Hole Binaries: Simulations in Full General Relativity , 2021, The Astrophysical Journal Letters.

[8]  H.Branzacs,et al.  The KM3NeT potential for the next core-collapse supernova observation with neutrinos , 2021, The European Physical Journal C.

[9]  P. M'esz'aros,et al.  Post-merger Jets from Supermassive Black Hole Coalescences as Electromagnetic Counterparts of Gravitational Wave Emission , 2021, The Astrophysical Journal Letters.

[10]  A. Heijboer,et al.  ANTARES Search for Point Sources of Neutrinos Using Astrophysical Catalogs: A Likelihood Analysis , 2020, The Astrophysical Journal.

[11]  M. J. Williams,et al.  Population Properties of Compact Objects from the Second LIGO–Virgo Gravitational-Wave Transient Catalog , 2020, 2010.14533.

[12]  R. Z. E. Alsaberi,et al.  Unexpected circular radio objects at high Galactic latitude , 2020, Publications of the Astronomical Society of Australia.

[13]  J. C. Arteaga-Velázquez,et al.  Evidence of 200 TeV Photons from HAWC J1825-134 , 2020, 2012.15275.

[14]  S. Pirrotta,et al.  The HERMES-technologic and scientific pathfinder , 2020, Astronomical Telescopes + Instrumentation.

[15]  Norbert Meidinger,et al.  Development status of the wide field imager instrument for Athena , 2020, Astronomical Telescopes + Instrumentation.

[16]  G. Miele,et al.  Starburst galaxies strike back: a multi-messenger analysis with Fermi-LAT and IceCube data , 2020, Monthly Notices of the Royal Astronomical Society.

[17]  C. Karoff,et al.  A General Overview for Localizing Short Gamma-Ray Bursts with a CubeSat Mega-Constellation , 2020, Frontiers in Astronomy and Space Sciences.

[18]  T. Piran,et al.  Searching for the radio remnants of short-duration gamma-ray bursts , 2020, 2008.03659.

[19]  L. Ho,et al.  The Destruction and Recreation of the X-Ray Corona in a Changing-look Active Galactic Nucleus , 2020, The Astrophysical Journal.

[20]  K. Auchettl,et al.  X-Ray Properties of TDEs , 2020 .

[21]  Linhua Jiang,et al.  Pōniuā‘ena: A Luminous z = 7.5 Quasar Hosting a 1.5 Billion Solar Mass Black Hole , 2020, The Astrophysical Journal.

[22]  M. Drout,et al.  Stars Stripped in Binaries: The Living Gravitational-wave Sources , 2020, The Astrophysical Journal.

[23]  M. Volonteri,et al.  Massive Black Hole Merger Rates: The Effect of Kiloparsec Separation Wandering and Supernova Feedback , 2020, The Astrophysical Journal.

[24]  T. Sakamoto,et al.  A thousand days after the merger: Continued X-ray emission from GW170817 , 2020, Monthly Notices of the Royal Astronomical Society.

[25]  L. Tibaldo,et al.  Morphological and Spectral Study of 4FGL J1115.1–6118 in the Region of the Young Massive Stellar Cluster NGC 3603 , 2020, The Astrophysical Journal.

[26]  F. Aharonian,et al.  Diffuse γ-ray emission toward the massive star-forming region, W40 , 2020, Astronomy & Astrophysics.

[27]  P. Duffell,et al.  Evolution of gas disc–embedded intermediate mass ratio inspirals in the LISA band , 2020, 2005.11333.

[28]  S. Ascenzi,et al.  High-latitude emission from the structured jet of γ-ray bursts observed off-axis , 2020, Astronomy & Astrophysics.

[29]  J. Kruijssen,et al.  High-Energy Particles and Radiation in Star-Forming Regions , 2020, Space Science Reviews.

[30]  A. Drake,et al.  The First Ultracompact Roche Lobe–Filling Hot Subdwarf Binary , 2020, The Astrophysical Journal.

[31]  M. Fejer,et al.  A cryogenic silicon interferometer for gravitational-wave detection , 2020, Classical and Quantum Gravity.

[32]  M. Miller,et al.  Star formation in accretion discs and SMBH growth , 2019, Monthly Notices of the Royal Astronomical Society.

[33]  G. Morlino,et al.  Contribution of starburst nuclei to the diffuse gamma-ray and neutrino flux , 2019, Monthly Notices of the Royal Astronomical Society.

[34]  S. Nissanke,et al.  Constraining properties of neutron star merger outflows with radio observations , 2019, Monthly Notices of the Royal Astronomical Society.

[35]  Y. N. Liu,et al.  Multi-messenger Observations of a Binary Neutron Star Merger , 2019, Proceedings of Multifrequency Behaviour of High Energy Cosmic Sources - XIII — PoS(MULTIF2019).

[36]  E. Troja,et al.  Gamma-Ray Burst Afterglows in the Multimessenger Era: Numerical Models and Closure Relations , 2019, The Astrophysical Journal.

[37]  T. B. Watson,et al.  ANTARES and IceCube Combined Search for Neutrino Point-like and Extended Sources in the Southern Sky , 2019, The Astrophysical Journal.

[38]  S. Ascenzi,et al.  Gamma-ray burst jet propagation, development of angular structure, and the luminosity function , 2019, Astronomy & Astrophysics.

[39]  P. Beniamini,et al.  X-ray plateaus in gamma-ray bursts’ light curves from jets viewed slightly off-axis , 2019, Monthly Notices of the Royal Astronomical Society.

[40]  W. Thomas Vestrand,et al.  Gamma Rays from Kilonova: A Potential Probe of r-process Nucleosynthesis , 2019, The Astrophysical Journal.

[41]  S. Ascenzi,et al.  Structured Jets and X-Ray Plateaus in Gamma-Ray Burst Phenomena , 2019, The Astrophysical Journal.

[42]  A. Vecchio,et al.  University of Birmingham Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations , 2020 .

[43]  Inverse reconstruction of jet structure from off-axis gamma-ray burst afterglows , 2019, 1912.01871.

[44]  Z. Haiman,et al.  The Assembly of the First Massive Black Holes , 2019, 1911.05791.

[45]  P. Munar-Adrover,et al.  Teraelectronvolt emission from the γ-ray burst GRB 190114C , 2019, Nature.

[46]  A. Quirrenbach,et al.  A very-high-energy component deep in the γ-ray burst afterglow , 2019, Nature.

[47]  Y. Shao,et al.  A Population of Neutron Star Ultraluminous X-Ray Sources with a Helium Star Companion , 2019, The Astrophysical Journal.

[48]  Lu Lu,et al.  The Next Generation of IceCube Real-time Neutrino Alerts , 2019, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[49]  D. A. Green,et al.  A revised catalogue of 294 Galactic supernova remnants , 2019, Journal of Astrophysics and Astronomy.

[50]  Eric Burns,et al.  Finding the Remnants of the Milky Way's Last Neutron Star Mergers , 2019, The Astrophysical Journal.

[51]  S. Ascenzi,et al.  On-axis view of GRB 170817A , 2019, Astronomy & Astrophysics.

[52]  G. Lamb,et al.  Reverse shocks in the relativistic outflows of gravitational wave-detected neutron star binary mergers , 2019, Monthly Notices of the Royal Astronomical Society.

[53]  M. Evans,et al.  Metrics for next-generation gravitational-wave detectors , 2019, Classical and Quantum Gravity.

[54]  T. B. Watson,et al.  Investigation of Two Fermi-LAT Gamma-Ray Blazars Coincident with High-energy Neutrinos Detected by IceCube , 2019, The Astrophysical Journal.

[55]  R. Blandford,et al.  Relativistic Jets from Active Galactic Nuclei , 2018, Annual Review of Astronomy and Astrophysics.

[56]  A. Fedynitch,et al.  IceCube neutrinos from hadronically powered gamma-ray galaxies , 2018, Journal of Cosmology and Astroparticle Physics.

[57]  M. Colpi,et al.  Post-Newtonian evolution of massive black hole triplets in galactic nuclei – IV. Implications for LISA , 2018, Monthly Notices of the Royal Astronomical Society.

[58]  K. Wiersema,et al.  The Optical Afterglow of GW170817 at One Year Post-merger , 2018, The Astrophysical Journal.

[59]  C. Markou,et al.  Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources , 2018, Astroparticle Physics.

[60]  A. Franckowiak,et al.  Eddington bias for cosmic neutrino sources , 2018, Astronomy & Astrophysics.

[61]  Li-xin Li,et al.  Radioactive Gamma-Ray Emissions from Neutron Star Mergers , 2018, The Astrophysical Journal.

[62]  T Sakamoto,et al.  A year in the life of GW170817: the rise and fall of a structured jet from a binary neutron star merger , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  A. Melandri,et al.  Compact radio emission indicates a structured jet was produced by a binary neutron star merger , 2018, Science.

[64]  W. Farr,et al.  Measuring the Star Formation Rate with Gravitational Waves from Binary Black Holes , 2018, The Astrophysical Journal.

[65]  Z. Dai,et al.  Multimessenger tests of Einstein's weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar , 2018, Journal of High Energy Astrophysics.

[66]  S. Desai,et al.  Constraints on differential Shapiro delay between neutrinos and photons from IceCube-170922A , 2018, The European Physical Journal C.

[67]  E. Sarkisyan-Grinbaum,et al.  Limits on neutrino Lorentz violation from multimessenger observations of TXS 0506+056 , 2018, Physics Letters B.

[68]  A. Franckowiak,et al.  High-energy Emission from Interacting Supernovae: New Constraints on Cosmic-Ray Acceleration in Dense Circumstellar Environments , 2018, The Astrophysical Journal.

[69]  J. Gunn,et al.  Subaru High-z Exploration of Low-luminosity Quasars (SHELLQs). V. Quasar Luminosity Function and Contribution to Cosmic Reionization at z = 6 , 2018, The Astrophysical Journal.

[70]  Jessica R. Lu,et al.  A population of luminous accreting black holes with hidden mergers , 2018, Nature.

[71]  M. M. Kasliwal,et al.  A Strong Jet Signature in the Late-time Light Curve of GW170817 , 2018, The Astrophysical Journal.

[72]  G. Nelemans,et al.  Physical properties of AM CVn stars: New insights from Gaia DR2 , 2018, Astronomy & Astrophysics.

[73]  T. Sakamoto,et al.  A long-lived neutron star merger remnant in GW170817: constraints and clues from X-ray observations , 2018, Monthly Notices of the Royal Astronomical Society.

[74]  S. Inoue,et al.  Neutrino emission from BL Lac objects: the role of radiatively inefficient accretion flows , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[75]  William H. Lee,et al.  Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A , 2018, Science.

[76]  I. collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert , 2018, Science.

[77]  K. Murase,et al.  Blazar Flares as an Origin of High-energy Cosmic Neutrinos? , 2018, The Astrophysical Journal.

[78]  J. DeLaunay,et al.  A Multimessenger Picture of the Flaring Blazar TXS 0506+056: Implications for High-energy Neutrino Emission and Cosmic-Ray Acceleration , 2018, The Astrophysical Journal.

[79]  B. Arsioli,et al.  Dissecting the region around IceCube-170922A: the blazar TXS 0506+056 as the first cosmic neutrino source , 2018, Monthly Notices of the Royal Astronomical Society.

[80]  C. Boisson,et al.  Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056 , 2018, Monthly Notices of the Royal Astronomical Society: Letters.

[81]  Shan Gao,et al.  Modelling the coincident observation of a high-energy neutrino and a bright blazar flare , 2018, Nature Astronomy.

[82]  T. Sakamoto,et al.  A luminous blue kilonova and an off-axis jet from a compact binary merger at z = 0.1341 , 2018, Nature Communications.

[83]  A. T. Deller,et al.  Superluminal motion of a relativistic jet in the neutron-star merger GW170817 , 2018, Nature.

[84]  V. Dwarkadas,et al.  Core-collapse supernovae as cosmic ray sources. , 2018, Monthly notices of the Royal Astronomical Society.

[85]  J. Zrake,et al.  Radio Sky Maps of the GRB 170817A Afterglow from Simulations , 2018, The Astrophysical Journal.

[86]  M. Campanelli,et al.  Electromagnetic Emission from Supermassive Binary Black Holes Approaching Merger , 2018, The Astrophysical Journal.

[87]  Ny,et al.  Observations of the missing baryons in the warm–hot intergalactic medium , 2018, Nature.

[88]  M. Ahlers,et al.  Opening a new window onto the universe with IceCube , 2018, Progress in Particle and Nuclear Physics.

[89]  J. Zrake,et al.  Numerical Simulations of the Jet Dynamics and Synchrotron Radiation of Binary Neutron Star Merger Event GW170817/GRB 170817A , 2018, The Astrophysical Journal.

[90]  Tum,et al.  AGN outflows as neutrino sources: an observational test , 2018, 1804.01386.

[91]  T. Sakamoto,et al.  The outflow structure of GW170817 from late-time broad-band observations , 2018, 1801.06516.

[92]  D. Maoz,et al.  The separation distribution and merger rate of double white dwarfs: improved constraints , 2018, 1801.04275.

[93]  B. Metzger,et al.  A Magnetar Origin for the Kilonova Ejecta in GW170817 , 2018, 1801.04286.

[94]  C. Guidorzi,et al.  The Binary Neutron Star Event LIGO/Virgo GW170817 160 Days after Merger: Synchrotron Emission across the Electromagnetic Spectrum , 2018, 1801.03531.

[95]  P. Hopkins,et al.  Predicting the binary black hole population of the Milky Way with cosmological simulations , 2018, Monthly Notices of the Royal Astronomical Society.

[96]  Z. Haiman,et al.  The late inspiral of supermassive black hole binaries with circumbinary gas discs in the LISA band , 2018, 1801.02266.

[97]  P. Chandra Circumstellar Interaction in Supernovae in Dense Environments—An Observational Perspective , 2017, Space Science Reviews.

[98]  M. Kachelrieß,et al.  High-energy Neutrinos from Galactic Superbubbles , 2017, The Astrophysical Journal.

[99]  H. Rix,et al.  An 800-million-solar-mass black hole in a significantly neutral Universe at a redshift of 7.5 , 2017, Nature.

[100]  J. Sollerman,et al.  The first direct double neutron star merger detection: Implications for cosmic nucleosynthesis , 2017, Astronomy & Astrophysics.

[101]  R. D. Stefano,et al.  Periodic self-lensing from accreting massive black hole binaries , 2017, 1707.02335.

[102]  B. A. Boom,et al.  Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA , 2013, Living Reviews in Relativity.

[103]  S. Inoue,et al.  Can Winds Driven by Active Galactic Nuclei Account for the Extragalactic Gamma-Ray and Neutrino Backgrounds? , 2017, 1712.10168.

[104]  M. Campanelli,et al.  Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger , 2017, 1712.05451.

[105]  P. B. Covas,et al.  Gravitational Waves and Gamma-rays from a Binary Neutron Star Merger: GW170817 and GRB 170817A , 2017, 1710.05834.

[106]  F. Aharonian,et al.  Diffuse gamma-ray emission in the vicinity of young star cluster Westerlund 2 , 2017, 1710.02803.

[107]  Richard Mushotzky,et al.  The close environments of accreting massive black holes are shaped by radiative feedback , 2017, Nature.

[108]  L. A. Antonelli,et al.  Extragalactic gamma-ray background from AGN winds and star-forming galaxies in cosmological galaxy-formation models , 2017, 1709.03497.

[109]  C. Haack,et al.  A measurement of the diffuse astrophysical muon neutrino flux using eight years of IceCube data. , 2017 .

[110]  C. Kopper Observation of Astrophysical Neutrinos in Six Years of IceCube Data , 2017 .

[111]  P. O’Brien,et al.  A deceleration search for magnetar pulsations in the X-ray plateaus of short GRBs , 2017, 1706.08538.

[112]  S. Coenders,et al.  Point-source and diffuse high-energy neutrino emission from Type IIn supernovae , 2017, 1705.06752.

[113]  A. Coil,et al.  X-rays across the galaxy population - II. The distribution of AGN accretion rates as a function of stellar mass and redshift , 2017, 1705.01132.

[114]  M. Hollands,et al.  The binarity of the local white dwarf population , 2017, 1703.06893.

[115]  C. Harrison,et al.  Impact of supermassive black hole growth on star formation , 2017, Nature Astronomy.

[116]  A. MacFadyen,et al.  On the orbital evolution of supermassive black hole binaries with circumbinary accretion discs , 2017, 1703.03913.

[117]  J. C. D'iaz-V'elez,et al.  THE CONTRIBUTION OF FERMI-2LAC BLAZARS TO DIFFUSE TEV–PEV NEUTRINO FLUX , 2016, 1611.03874.

[118]  Davide Lazzati,et al.  Off-axis emission of short γ-ray bursts and the detectability of electromagnetic counterparts of gravitational-wave-detected binary mergers , 2016, 1610.01157.

[119]  M. Campanelli,et al.  Relativistic Dynamics and Mass Exchange in Binary Black Hole Mini-disks , 2016, 1612.02373.

[120]  T. Piran,et al.  THE OBSERVABLE SIGNATURES OF GRB COCOONS , 2016, 1610.05362.

[121]  Jorge S. Díaz,et al.  Testing Lorentz and CPT Invariance with Neutrinos , 2016, Symmetry.

[122]  P. M'esz'aros,et al.  Limits on the neutrino velocity, Lorentz invariance, and the weak equivalence principle with TeV neutrinos from gamma-ray bursts , 2016, 1603.07568.

[123]  A. Quirrenbach,et al.  Acceleration of petaelectronvolt protons in the Galactic Centre , 2016, Nature.

[124]  R. Perley,et al.  Deep 3-GHz observations of the Lockman Hole North with the Very Large Array - II. Catalogue and μJy source properties , 2016, 1603.03085.

[125]  P. Favali,et al.  Letter of intent for KM3NeT 2.0 , 2016, 1601.07459.

[126]  A. Petiteau,et al.  Science with the space-based interferometer eLISA. III: probing the expansion of the universe using gravitational wave standard sirens , 2016, 1601.07112.

[127]  Aya Bamba,et al.  Radioactive decay products in neutron star merger ejecta: heating efficiency and γ-ray emission , 2015, 1511.05580.

[128]  V. Ptuskin,et al.  Type IIn supernovae as sources of high energy astrophysical neutrinos , 2015, 1510.08387.

[129]  L. A. Antonelli,et al.  Science with the Cherenkov Telescope Array , 2017, 1709.07997.

[130]  B. Fields,et al.  Are starburst galaxies proton calorimeters , 2016, 1612.07290.

[131]  A. Quirrenbach,et al.  The population of TeV pulsar wind nebulae in the H.E.S.S. Galactic Plane Survey , 2017, 1702.08280.

[132]  K. Bechtol,et al.  Evidence against Star-forming Galaxies as the Dominant Source of Icecube Neutrinos , 2015, 1511.00688.

[133]  India.,et al.  Teraelectronvolt pulsed emission from the Crab pulsar detected by MAGIC , 2015, 1510.07048.

[134]  D. Ellison,et al.  Ultrahard spectra of PeV neutrinos from supernovae in compact star clusters , 2015, 1507.04018.

[135]  Tum,et al.  A simplified view of blazars: the neutrino background , 2015, 1506.09135.

[136]  D. Guetta Neutrinos from gamma ray bursts in the IceCube and ARA era , 2015, 1503.07146.

[137]  H. V. Eerten Simulation and physical model based gamma-ray burst afterglow analysis , 2015, 1503.05308.

[138]  Andrew King,et al.  Powerful Outflows and Feedback from Active Galactic Nuclei , 2015, 1503.05206.

[139]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[140]  M. V. Fernandes,et al.  The exceptionally powerful TeV γ-ray emitters in the Large Magellanic Cloud , 2015, Science.

[141]  Tsvi Piran,et al.  Mass ejection from neutron star mergers: different components and expected radio signals , 2015, 1501.01986.

[142]  A. Mastichiadis,et al.  Bethe–Heitler emission in BL Lacs: filling the gap between X-rays and γ-rays , 2014, 1411.1908.

[143]  J. Vink,et al.  On the electron-ion temperature ratio established by collisionless shocks , 2014, 1407.4499.

[144]  Jorge S. Díaz,et al.  Neutrinos as Probes of Lorentz Invariance , 2014, 1406.6838.

[145]  I. Tamborra,et al.  Star-forming galaxies as the origin of diffuse high-energy backgrounds: gamma-ray and neutrino connections, and implications for starburst history , 2014, 1404.1189.

[146]  L. Winter,et al.  Intermediate-mass black holes in AGN discs – II. Model predictions and observational constraints , 2014, 1403.6433.

[147]  B. Metzger,et al.  Constraints on long-lived remnants of neutron star binary mergers from late-time radio observations of short duration gamma-ray bursts , 2013, 1310.4506.

[148]  B. Metzger,et al.  X-ray decay lines from heavy nuclei in supernova remnants as a probe of the r-process origin and the birth periods of magnetars , 2013, 1310.2950.

[149]  J. P. Rodrigues,et al.  Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector , 2013, Science.

[150]  R. Diehl Cosmic Gamma-Ray Spectroscopy , 2013, 1307.4198.

[151]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[152]  J. Telting,et al.  A progenitor binary and an ejected mass donor remnant of faint type Ia supernovae , 2013, 1304.4452.

[153]  P. Giommi,et al.  Detection of the Characteristic Pion-Decay Signature in Supernova Remnants , 2013, Science.

[154]  Y. Mellier,et al.  Mass assembly in quiescent and star-forming galaxies since z ≃ 4 from UltraVISTA , 2013, 1301.3157.

[155]  G. Nelemans,et al.  A search for the hidden population of AM CVn binaries in the Sloan Digital Sky Survey , 2012, 1211.6439.

[156]  J. Trump,et al.  Bolometric luminosities and Eddington ratios of X-ray selected active galactic nuclei in the XMM-COSMOS survey , 2012, 1206.2642.

[157]  S. Safi-Harb,et al.  A census of high-energy observations of Galactic supernova remnants , 2012, 1202.0245.

[158]  J. Chiang,et al.  A Cocoon of Freshly Accelerated Cosmic Rays Detected by Fermi in the Cygnus Superbubble , 2011, Science.

[159]  M. V. Fernandes,et al.  Discovery of extended VHE γ-ray emission from the vicinity of the young massive stellar cluster Westerlund 1 , 2011, 1111.2043.

[160]  Tsvi Piran,et al.  Detectable radio flares following gravitational waves from mergers of binary neutron stars , 2011, Nature.

[161]  S. Márka,et al.  Bounding the Time Delay between High-energy Neutrinos and Gravitational-wave Transients from Gamma-ray Bursts , 2011, 1101.4669.

[162]  Benno Willke,et al.  The Einstein Telescope: a third-generation gravitational wave observatory , 2010 .

[163]  The Cta Consortium Design Concepts for the Cherenkov Telescope Array , 2010, 1008.3703.

[164]  Marta Volonteri,et al.  Formation of supermassive black holes , 2010, 1003.4404.

[165]  G. Nelemans,et al.  The chemical composition of donors in AM CVn stars and ultracompact X-ray binaries: observational tests of their formation , 2009, 0909.3376.

[166]  T. Weekes,et al.  A connection between star formation activity and cosmic rays in the starburst galaxy M82 , 2009, Nature.

[167]  G. Lodato,et al.  Black hole mergers: the first light , 2009, 0910.0002.

[168]  A. R. Bazer-Bachi,et al.  Detection of Gamma Rays from a Starburst Galaxy , 2009, Science.

[169]  A. Fabian,et al.  Optical-to-X-ray emission in low-absorption AGN: results from the Swift–BAT 9-month catalogue , 2009, 0907.2272.

[170]  A. Fabian,et al.  Simultaneous X-ray/optical/UV snapshots of active galactic nuclei from XMM–Newton: spectral energy distributions for the reverberation mapped sample , 2008, 0810.3777.

[171]  M. Trichas,et al.  A new method for determining the sensitivity of X-ray imaging observations and the X-ray number counts , 2008, 0805.4417.

[172]  U. Padova,et al.  Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity , 2008, 0805.1841.

[173]  J. Vink The Kinematics of Kepler’s Supernova Remnant as Revealed by Chandra , 2008, 0803.4011.

[174]  Z. Haiman,et al.  Premerger Localization of Gravitational Wave Standard Sirens with LISA: Triggered Search for an Electromagnetic Counterpart , 2007, 0712.1144.

[175]  HESS Collaboration F. Aharonian,et al.  New constraints on the mid-IR EBL from the HESS discovery of VHE gamma-rays from 1ES 0229+200 , 2007, 0709.4584.

[176]  L. Ho,et al.  The X-ray and radio connection in low-luminosity active nuclei , 2007, astro-ph/0701546.

[177]  Y. Levin Starbursts near supermassive black holes: young stars in the Galactic Centre, and gravitational waves in LISA band , 2006, astro-ph/0603583.

[178]  A. R. Bazer-Bachi,et al.  H.E.S.S. Observations of the Supernova Remnant RX J0852.0–4622: Shell-Type Morphology and Spectrum of a Widely Extended Very High Energy Gamma-Ray Source , 2006, 0709.4621.

[179]  P. Ghavamian,et al.  A Physical Relationship between Electron-Proton Temperature Equilibration and Mach Number in Fast Collisionless Shocks , 2006, astro-ph/0611306.

[180]  A. Kappes,et al.  Potential Neutrino Signals from Galactic γ-Ray Sources , 2006 .

[181]  E. Ramirez-Ruiz,et al.  Gamma-Ray Bursts in the Swift Era , 2009, 0909.1531.

[182]  A. Loeb,et al.  The cumulative background of high energy neutrinos from starburst galaxies , 2006, astro-ph/0601695.

[183]  N. Gehrels,et al.  Evidence for a Canonical Gamma-Ray Burst Afterglow Light Curve in the Swift XRT Data , 2005, astro-ph/0508332.

[184]  N. Gehrels,et al.  Physical Processes Shaping Gamma-Ray Burst X-Ray Afterglow Light Curves: Theoretical Implications from the Swift X-Ray Telescope Observations , 2005, astro-ph/0508321.

[185]  P. Hopkins,et al.  Black Holes in Galaxy Mergers: Evolution of Quasars , 2005, astro-ph/0504190.

[186]  G. Nelemans,et al.  Short-period AM CVn systems as optical, X-ray and gravitational-wave sources , 2003, astro-ph/0312193.

[187]  Mit,et al.  The Slow Temperature Equilibration behind the Shock Front of SN 1006 , 2003, astro-ph/0303051.

[188]  S. Rappaport,et al.  On the formation and evolution of black hole binaries , 2002, astro-ph/0207153.

[189]  Y. Terashima,et al.  CHANDRA SNAPSHOT OBSERVATIONS OF LOW-LUMINOSITY AGNS WITHA COMPACT RADIO SOURCE , 2002 .

[190]  John G. Kirk,et al.  Particle acceleration by ultrarelativistic shocks: theory and simulations , 2001, astro-ph/0107530.

[191]  J. Hughes,et al.  RX J0852.0–4622: Another Nonthermal Shell-Type Supernova Remnant (G266.2–1.2) , 2000, astro-ph/0010510.

[192]  A. Panaitescu,et al.  Afterglow Emission from Naked Gamma-Ray Bursts , 2000, astro-ph/0006317.

[193]  R. Cen,et al.  Properties of Cosmic Shock Waves in Large-Scale Structure Formation , 2000, astro-ph/0005444.

[194]  Y. A. Gallant,et al.  Particle Acceleration at Ultrarelativistic Shocks: An Eigenfunction Method , 2000, astro-ph/0005222.

[195]  R. University,et al.  X-Ray Emission From the Shell-Type SNR G347.3-0.5 , 1999, astro-ph/9906364.

[196]  P. Maxted,et al.  The fraction of double degenerates among DA white dwarfs , 1999, astro-ph/9901273.

[197]  T. Piran,et al.  Spectra and Light Curves of Gamma-Ray Burst Afterglows , 1997, astro-ph/9712005.

[198]  D. Ryu,et al.  Cluster accretion shocks as possible acceleration sites for ultra-high-energy protons below the greisen cutoff , 1995, astro-ph/9507113.

[199]  David W. Hogg,et al.  Deep Optical Galaxy Counts with the Keck Telescope , 1995, astro-ph/9506095.

[200]  M. Pohl On the predictive power of the minimum energy condition. 2: Fractional calorimeter behaviour in the diffuse high energy gamma emission of spiral galaxies , 1994 .

[201]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[202]  S. Rappaport,et al.  The evolution of ultrashort period binary systems , 1986 .

[203]  R. Webbink,et al.  The evolution of highly compact binary stellar systems , 1982 .

[204]  R. Webbink Evolution of low-mass close binary systems. VI. Population II W Ursae Majoris systems , 1979 .

[205]  A. Bell The acceleration of cosmic rays in shock fronts – I , 1978 .