Noninvasive, On-Line Monitoring of the Biotransformation by Yeast of Glucose to Ethanol Using Dispersive Raman Spectroscopy and Chemometrics

We describe the first application of dispersive Raman spectroscopy using a diode laser exciting at 780 nm and a charge-coupled device (CCD) detector to the noninvasive, on-line determination of the biotransformation by yeast of glucose to ethanol. Software was developed which automatically removed the effects of cosmic rays and other noise, normalized the spectra to an invariant peak, then removed the “baseline” arising from interference by fluorescent impurities, to obtain the “true” Raman spectra. Variable selection was automatically performed on the parameters of relevant Raman peaks (height, width, position of top and center, area and skewness), and a small subset used as the input to cross-validated models based on partial least-squares (PLS) regression. The multivariate calibration models so formed were sufficiently robust to be able to predict the concentration of glucose and ethanol in a completely different fermentation with a precision better than 5%. Dispersive Raman spectroscopy, when coupled with the appropriate chemometrics, is a very useful approach to the noninvasive, on-line determination of the progress of microbial fermentations.

[1]  P. Griffiths Fourier Transform Infrared Spectrometry , 2007 .

[2]  C. Moffat Lipid Analysis in Oils and Fats , 2001 .

[3]  D B Kell,et al.  Quantification of microbial productivity via multi‐angle light scattering and supervised learning , 1998, Biotechnology and bioengineering.

[4]  D B Kell,et al.  Genetic programming:  a novel method for the quantitative analysis of pyrolysis mass spectral data. , 1997, Analytical chemistry.

[5]  Douglas B. Kell,et al.  Discrimination of the variety and region of origin of extra virgin olive oils using 13C NMR and multivariate calibration with variable reduction , 1997 .

[6]  D. Kell,et al.  An introduction to wavelet transforms for chemometricians: A time-frequency approach , 1997 .

[7]  Massoud Motamedi,et al.  Raman Spectroscopy for Non-Invasive Characterization of Ocular Tissue: Potential for Detection of Biological Molecules , 1997 .

[8]  Daniel Picque,et al.  Monitoring of fermentation processes producing lactic acid bacteria by mid-infrared spectroscopy , 1997 .

[9]  F. Adar,et al.  Raman Spectroscopy for Process/Quality Control , 1997 .

[10]  Brian McNeil,et al.  At-Line Control and Fault Analysis In an Industrial High Cell Density Escherichia Coli Fermentation, Using NIR Spectroscopy , 1996 .

[11]  D. Kell,et al.  Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. , 1996, Microbiological reviews.

[12]  B. Perret,et al.  Determination of Major Compounds of Alcoholic Fermentation by Middle-Infrared Spectroscopy: Study of Temperature Effects and Calibration Methods , 1996 .

[13]  Douglas B. Kell,et al.  Rapid and non-invasive quantification of metabolic substrates in biological cell suspensions using non-linear dielectric spectroscopy with multivariate calibration and artificial neural networks. Principles and applications , 1996 .

[14]  C. Rosen,et al.  Compact Raman Spectrometers: Data Handling Methods , 1996 .

[15]  John F. Turner,et al.  Near-Infrared Acousto-Optic Tunable Filter Hadamard Transform Spectroscopy , 1996 .

[16]  B. McNeil,et al.  Near-Infrared Spectroscopic Determination of Acetate, Ammonium, Biomass, and Glycerol in an Industrial Escherichia Coli Fermentation , 1996 .

[17]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[18]  Douglas B. Kell,et al.  GMP — good modelling practice: an essential component of good manufacturing practice , 1995 .

[19]  Massoud Motamedi,et al.  Raman Spectroscopy Studies of Metabolic Concentrations in Aqueous Solutions and Aqueous Humor Specimens , 1995 .

[20]  Jan Greve,et al.  Development and Application of Raman Microspectroscopic and Raman Imaging Techniques for Cell Biological Studies , 1995 .

[21]  Dieter Naumann,et al.  FT-IR spectroscopy and FT-Raman spectroscopy are powerful analytical tools for the non-invasive characterization of intact microbial cells , 1995 .

[22]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[23]  Stewart F. Parker,et al.  A review of the theory of Fourier-transform Raman spectroscopy , 1994 .

[24]  B. Chase A New Generation of Raman Instrumentation , 1994 .

[25]  Andreas Hoffmann,et al.  Application of near‐infrared‐Fourier transform Raman spectroscopy in medical research , 1994 .

[26]  Roberto Battiti,et al.  Using mutual information for selecting features in supervised neural net learning , 1994, IEEE Trans. Neural Networks.

[27]  D Matteuzzi,et al.  A near‐infrarod spectroscopy technique for the control of fermentation processes: An application to lactic acid fermentation , 1994, Biotechnology and bioengineering.

[28]  Z. Ge,et al.  Noninvasive Spectroscopy for Monitoring Cell Density in a Fermentation Process , 1994 .

[29]  Brian McNeil,et al.  Monitoring biomass and glycerol in an Escherichia coli fermentation using near-infrared spectroscopy , 1994 .

[30]  G. D. Pitt,et al.  Confocal Raman Microspectroscopy Using a Stigmatic Spectrograph and CCD Detector , 1994 .

[31]  P. Treado,et al.  Infrared and Raman Spectroscopic Imaging , 1994 .

[32]  M. Jouan,et al.  Use of a Mono-Fiber Optrode in Remote and in Situ Measurements by the Raman/Laser/Fiber Optics (RLFO) Method , 1993 .

[33]  P. Carey,et al.  High-Performance Raman Spectroscopic System Based on a Single Spectrograph, CCD, Notch Filters, and a Kr+ Laser Ranging from the Near-IR to Near-UV Regions , 1993 .

[34]  Charles K. Mann,et al.  Wavelength Calibration of a Multichannel Spectrometer , 1993 .

[35]  B. Kowalski,et al.  The parsimony principle applied to multivariate calibration , 1993 .

[36]  Michael D. Morris,et al.  Principles and spectroscopic applications of volume holographic optics , 1993 .

[37]  Belle R. Upadhyaya,et al.  Chemometric Data Analysis Using Artificial Neural Networks , 1993 .

[38]  R. Rava,et al.  Quantitative histochemical analysis of human artery using Raman spectroscopy. , 1992, Journal of photochemistry and photobiology. B, Biology.

[39]  M. Pons Bioprocess Monitoring and Control , 1992 .

[40]  Gerwin J. Puppels,et al.  Description and performance of a highly sensitive confocal Raman microspectrometer , 1991 .

[41]  D. Haaland,et al.  Multivariate calibration of carbon Raman spectra for quantitative determination of peak temperature history , 1990 .

[42]  Gerwin J. Puppels,et al.  A high‐throughput Raman notch filter set , 1990 .

[43]  J B Callis,et al.  Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy. , 1990, Analytical chemistry.

[44]  Michael M. Carrabba,et al.  The Utilization of a Holographic Bragg Diffraction Filter for Rayleigh Line Rejection in Raman Spectroscopy , 1990 .

[45]  Christopher L. Davey,et al.  Real-time monitoring of cellular biomass: Methods and applications , 1990 .

[46]  Thomas B. Shope,et al.  The Direct Analysis of Fermentation Products by Raman Spectroscopy , 1987 .

[47]  T. Hirschfeld,et al.  FT-Raman Spectroscopy: Development and Justification , 1986 .

[48]  C. H. Whiteley On Defining “Moral” , 1960 .

[49]  D. Kell,et al.  The exploitation of chemometric methods in the analysis of spectroscopic data: application to olive oils , 1998 .

[50]  C. Spiegelman,et al.  Theoretical Justification of Wavelength Selection in PLS Calibration:  Development of a New Algorithm. , 1998, Analytical Chemistry.

[51]  P. Reich Infrared and Raman Spectroscopy. Methods and Applications , 1998 .

[52]  Douglas B. Kell,et al.  Wavelet Denoising of Infrared Spectra , 1997 .

[53]  Masahiro Tamai,et al.  Prediction of the concentrations of ethanol and acetic acid in the culture broth of a rice vinegar fermentation using near-infrared spectroscopy , 1997 .

[54]  Patrick J. Hendra,et al.  Routine analytical Fourier transform Raman spectroscopy. Part 2. An updated review , 1995 .

[55]  G. D. Pitt,et al.  Use of a rapid scanning stigmatic Raman imaging spectrograph in the industrial environment , 1994 .

[56]  B. Schrader,et al.  Micro and two-dimensional NIR FT raman spectroscopy , 1994 .

[57]  G. Mantovani,et al.  Proposal for the on-line utilization of the NIR technique to control fermentations , 1993 .

[58]  Exposition,et al.  Harnessing biotechnology for the 21st century : proceedings of the Ninth International Biotechnology Symposium and Exposition, Crystal City, Virginia, August 16-21, 1992 , 1992 .

[59]  P. Hendra Fourier transform Raman spectroscopy , 1991 .

[60]  Jeanette G. Grasselli,et al.  Analytical Raman spectroscopy , 1991 .

[61]  Joanna Góral,et al.  Fourier Transform Raman studies of materials and compounds of biological importance , 1990 .

[62]  Bernhard Schrader,et al.  Raman/infrared atlas of organic compounds , 1989 .

[63]  Nguyen Quy Dao,et al.  Methode d'analyse quantitative par spectrometrie Raman-laser associee aux fibres optiques pour le suivi d'une fermentation alcoolique , 1988 .

[64]  Philip J. Wyatt,et al.  Chapter VI Differential Light Scattering Techniques for Microbiology , 1973 .