Bayesian inference for the Errors-In-Variables model

We discuss the Bayesian inference based on the Errors-In-Variables (EIV) model. The proposed estimators are developed not only for the unknown parameters but also for the variance factor with or without prior information. The proposed Total Least-Squares (TLS) estimators of the unknown parameter are deemed as the quasi Least-Squares (LS) and quasi maximum a posterior (MAP) solution. In addition, the variance factor of the EIV model is proven to be always smaller than the variance factor of the traditional linear model. A numerical example demonstrates the performance of the proposed solutions.

[1]  Wolfgang Polasek,et al.  Bayesian generalized errors in variables (GEIV) models for censored regressions , 1995 .

[2]  A. Wieser,et al.  On weighted total least-squares adjustment for linear regression , 2008 .

[3]  Xu Peiliang,et al.  Overview of Total Least Squares Methods , 2013 .

[4]  Kyle Snow,et al.  Topics in Total Least-Squares Adjustment within the Errors-In-Variables Model: Singular Cofactor Matrices and Prior Information , 2012 .

[5]  Bofeng Li,et al.  An iterative solution of weighted total least-squares adjustment , 2011 .

[6]  Shan Jie A fast recursive method for repeated computation of reliability matrix QvvP , 1989 .

[7]  Heleno Bolfarine,et al.  Bayesian inference for an extended simple regression measurement error model using skewed priors , 2007 .

[8]  Luc Bauwens,et al.  Bayesian Inference in Dynamic Econometric Models , 2000 .

[9]  Chuang Li,et al.  Seamless multivariate affine error-in-variables transformation and its application to map rectification , 2013, Int. J. Geogr. Inf. Sci..

[10]  Jean-François Richard,et al.  Bayesian inference in error-in-variables models , 1974 .

[11]  Stephen M. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 , 1986 .

[12]  Peiliang Xu,et al.  Estimability analysis of variance and covariance components , 2007 .

[13]  Yaron A. Felus,et al.  On symmetrical three-dimensional datum conversion , 2008 .

[14]  Burkhard Schaffrin,et al.  On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms , 2008 .

[15]  S. Sinha Introduction to Bayesian Statistics (2nd ed.) , 2008 .

[16]  Burkhard Schaffrin,et al.  Reliability Measures for Correlated Observations , 1997 .

[17]  X. Fang On non-combinatorial weighted total least squares with inequality constraints , 2014, Journal of Geodesy.

[18]  Park M. Reilly,et al.  A Bayesian Study of the Error-in-Variables Model , 1981 .

[19]  A. Zellner An Introduction to Bayesian Inference in Econometrics , 1971 .

[20]  F. Neitzel Generalization of total least-squares on example of unweighted and weighted 2D similarity transformation , 2010 .

[21]  K. Koch Introduction to Bayesian Statistics , 2007 .

[22]  Xing Fang,et al.  Weighted total least squares: necessary and sufficient conditions, fixed and random parameters , 2013, Journal of Geodesy.

[23]  Xing Fang,et al.  A total least squares solution for geodetic datum transformations , 2014, Acta Geodaetica et Geophysica.

[24]  S. Jazaeri,et al.  Weighted total least squares formulated by standard least squares theory , 2012 .

[25]  Peiliang Xu The effect of errors-in-variables on variance component estimation , 2016, Journal of Geodesy.

[26]  Yaron A. Felus Application of Total Least Squares for Spatial Point Process Analysis , 2004 .

[27]  Arnold Zellner,et al.  An Introduction to Bayesian Inference in Econometrics. , 1974 .

[28]  O. Akyilmaz,et al.  Total Least Squares Solution of Coordinate Transformation , 2007 .

[29]  Karl-Rudolf Koch,et al.  Maximum likelihood estimate of variance components , 1986 .

[30]  G. Saitta,et al.  An accurate and straightforward approach to line regression analysis of error-affected experimental data , 1989 .

[31]  Karl-Rudolf Koch,et al.  Parameter estimation and hypothesis testing in linear models , 1988 .

[32]  P. Dellaportas,et al.  BAYESIAN ANALYSIS OF ERRORS-IN-VARIABLES REGRESSION MODELS , 1995 .

[33]  Chuang Shi,et al.  Total least squares adjustment in partial errors-in-variables models: algorithm and statistical analysis , 2012, Journal of Geodesy.

[34]  Ali Reza Amiri-Simkooei,et al.  Data-snooping procedure applied to errors-in-variables models , 2013, Studia Geophysica et Geodaetica.

[35]  D. V. Lindley,et al.  The Bayesian Estimation of a Linear Functional Relationship , 1968 .

[36]  NEW AFFINE TRANSFORMATION PARAMETERS FOR THE HORIZONTAL NETWORK OF SEOUL/KOREA BY MULTIVARIATE TLS-ADJUSTMENT , 2009 .

[37]  Xing Fang,et al.  A structured and constrained Total Least-Squares solution with cross-covariances , 2013, Studia Geophysica et Geodaetica.

[38]  Burkhard Schaffrin,et al.  A note on Constrained Total Least-Squares estimation , 2006 .

[39]  Joseph L. Awange,et al.  Applications of Linear and Nonlinear Models: Fixed Effects, Random Effects, and Total Least Squares , 2012 .

[40]  Xing Fang,et al.  Weighted total least-squares with constraints: a universal formula for geodetic symmetrical transformations , 2015, Journal of Geodesy.

[41]  A. Amiri-Simkooei Application of least squares variance component estimation to errors-in-variables models , 2013, Journal of Geodesy.

[42]  Peter Teunissen,et al.  The non-linear 2D symmetric helmert transformation : An exact non-linear least-squares solution , 1988 .

[43]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.