Visual stability based on remapping of attention pointers

[1]  Patrick Cavanagh,et al.  The reference frame of the tilt aftereffect. , 2011, Journal of vision.

[2]  Edward F. Ester,et al.  Spatially Global Representations in Human Primary Visual Cortex during Working Memory Maintenance , 2009, The Journal of Neuroscience.

[3]  Jan Theeuwes,et al.  Evidence for the predictive remapping of visual attention , 2009, Experimental Brain Research.

[4]  P. Cavanagh,et al.  The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. , 2009, Journal of vision.

[5]  J. Bisley,et al.  Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. , 2009, Journal of neurophysiology.

[6]  R. Berman,et al.  Attention and active vision , 2009, Vision Research.

[7]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[8]  Heiner Deubel,et al.  Post-saccadic location judgments reveal remapping of saccade targets to non-foveal locations. , 2009, Journal of vision.

[9]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[10]  J. Assad,et al.  Direction selectivity of neurons in the macaque lateral intraparietal area. , 2009, Journal of neurophysiology.

[11]  Arash Afraz,et al.  Topography of the motion aftereffect with and without eye movements. , 2008, Journal of vision.

[12]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[13]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[14]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[15]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[16]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[17]  Jeroen J. A. van Boxtel,et al.  Retinotopic and non-retinotopic stimulus encoding in binocular rivalry and the involvement of feedback. , 2008, Journal of vision.

[18]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[19]  Gerald P. Keith,et al.  Saccade-related remapping of target representations between topographic maps: a neural network study , 2008, Journal of Computational Neuroscience.

[20]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[21]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[22]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[23]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[24]  Robert H. Wurtz,et al.  Influence of the thalamus on spatial visual processing in frontal cortex , 2006, Nature.

[25]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[26]  C. Curtis Prefrontal and parietal contributions to spatial working memory , 2006, Neuroscience.

[27]  M. Chun,et al.  Dissociable neural mechanisms supporting visual short-term memory for objects , 2006, Nature.

[28]  Katherine M. Armstrong,et al.  Visual and oculomotor selection: links, causes and implications for spatial attention , 2006, Trends in Cognitive Sciences.

[29]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[30]  Ronald A. Rensink,et al.  Change blindness: past, present, and future , 2005, Trends in Cognitive Sciences.

[31]  Robert H. Wurtz,et al.  Subcortical Modulation of Attention Counters Change Blindness , 2004, The Journal of Neuroscience.

[32]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[33]  J. Jay Todd,et al.  Capacity limit of visual short-term memory in human posterior parietal cortex , 2004, Nature.

[34]  F. Hamker A dynamic model of how feature cues guide spatial attention , 2004, Vision Research.

[35]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[36]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[37]  M. Goldberg,et al.  The time course of perisaccadic receptive field shifts in the lateral intraparietal area of the monkey. , 2003, Journal of neurophysiology.

[38]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[39]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[40]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. II. Memory responses. , 2001, Journal of neurophysiology.

[41]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[42]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[43]  Frans A. J. Verstraten,et al.  Limits of attentive tracking reveal temporal properties of attention , 2000, Vision Research.

[44]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[45]  Christian Quaia,et al.  The maintenance of spatial accuracy by the perisaccadic remapping of visual receptive fields , 1998, Neural Networks.

[46]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[47]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[48]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[49]  P. Cavanagh,et al.  Attentional resolution , 1997, Trends in Cognitive Sciences.

[50]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[51]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[52]  D. E. Irwin Integrating Information Across Saccadic Eye Movements , 1996 .

[53]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[54]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[55]  D. Kahneman,et al.  The reviewing of object files: Object-specific integration of information , 1992, Cognitive Psychology.

[56]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[57]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[58]  Z. Pylyshyn The role of location indexes in spatial perception: A sketch of the FINST spatial-index model , 1989, Cognition.

[59]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  R. Andersen Visual and eye movement functions of the posterior parietal cortex. , 1989, Annual review of neuroscience.

[61]  A Treisman,et al.  Feature analysis in early vision: evidence from search asymmetries. , 1988, Psychological review.

[62]  D. Crammond,et al.  Neuronal correlates in posterior parietal lobe of the expectation of events , 1987, Behavioural Brain Research.

[63]  Y. Ejima,et al.  Facilitatory and inhibitory after-effect of spatially localized grating adaptation , 1984, Vision Research.

[64]  B. Julesz,et al.  The existence and role of retinotopic and spatiotopic forms of visual persistence. , 1982, Acta psychologica.

[65]  J. Cowan,et al.  Localized effects of spatial frequency adaptation. , 1982, Journal of the Optical Society of America.

[66]  E Borg,et al.  The activity of the stapedius muscle in man during vocalization. , 1975, Acta oto-laryngologica.

[67]  I. Rock,et al.  Stroboscopic movement based on change of phenomenal rather than retinal location. , 1962, The American journal of psychology.