Deep Learning for Instance Retrieval: A Survey

In recent years a vast amount of visual content has been generated and shared from many fields, such as social media platforms, medical imaging, and robotics. This abundance of content creation and sharing has introduced new challenges, particularly that of searching databases for similar content — Content Based Image Retrieval (CBIR) — a long-established research area in which improved efficiency and accuracy are needed for real-time retrieval. Artificial intelligence has made progress in CBIR and has significantly facilitated the process of instance search. In this survey we review recent instance retrieval works that are developed based on deep learning algorithms and techniques, with the survey organized by deep network architecture types, deep features, feature embedding and aggregation methods, and network fine-tuning strategies. Our survey considers a wide variety of recent methods, whereby we identify milestone work, reveal connections among various methods and present the commonly used benchmarks, evaluation results, common challenges, and propose promising future directions.

[1]  Yannis Avrithis,et al.  Local Features and Visual Words Emerge in Activations , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Xiaogang Wang,et al.  DeepFashion: Powering Robust Clothes Recognition and Retrieval with Rich Annotations , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[3]  Atsuto Maki,et al.  Visual Instance Retrieval with Deep Convolutional Networks , 2014, ICLR.

[4]  Yonghong Tian,et al.  CNN vs. SIFT for Image Retrieval: Alternative or Complementary? , 2016, ACM Multimedia.

[5]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[6]  Avik Bhattacharya,et al.  Siamese graph convolutional network for content based remote sensing image retrieval , 2019, Comput. Vis. Image Underst..

[7]  Florent Perronnin,et al.  Fisher Kernels on Visual Vocabularies for Image Categorization , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Qi Tian,et al.  Exploiting Hierarchical Activations of Neural Network for Image Retrieval , 2016, ACM Multimedia.

[9]  Vicente Ordonez,et al.  Instance-level Image Retrieval using Reranking Transformers , 2021, ArXiv.

[10]  Kohei Ozaki,et al.  Large-scale Landmark Retrieval/Recognition under a Noisy and Diverse Dataset , 2019, ArXiv.

[11]  Ling-Yu Duan,et al.  Multi-Scale Context Attention Network for Image Retrieval , 2018, ACM Multimedia.

[12]  Ivan Laptev,et al.  Training Vision Transformers for Image Retrieval , 2021, ArXiv.

[13]  Jan-Michael Frahm,et al.  Learned Contextual Feature Reweighting for Image Geo-Localization , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Andrew Zisserman,et al.  Smooth-AP: Smoothing the Path Towards Large-Scale Image Retrieval , 2020, ECCV.

[15]  Chunheng Wang,et al.  Iterative Manifold Embedding Layer Learned by Incomplete Data for Large-Scale Image Retrieval , 2017, IEEE Transactions on Multimedia.

[16]  Noel E. O'Connor,et al.  Saliency Weighted Convolutional Features for Instance Search , 2017, 2018 International Conference on Content-Based Multimedia Indexing (CBMI).

[17]  Cong Bai,et al.  Unsupervised Adversarial Instance-Level Image Retrieval , 2021, IEEE Transactions on Multimedia.

[18]  Ananda S. Chowdhury,et al.  A bag of constrained informative deep visual words for image retrieval , 2020, Pattern Recognit. Lett..

[19]  Cordelia Schmid,et al.  Hamming Embedding and Weak Geometric Consistency for Large Scale Image Search , 2008, ECCV.

[20]  Qi Tian,et al.  Effective Image Retrieval via Multilinear Multi-Index Fusion , 2017, IEEE Transactions on Multimedia.

[21]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[22]  Yiannis S. Boutalis,et al.  Deep convolutional features for image retrieval , 2021, Expert Syst. Appl..

[23]  Qi Tian,et al.  Good Practice in CNN Feature Transfer , 2016, ArXiv.

[24]  Ser-Nam Lim,et al.  A Metric Learning Reality Check , 2020, ECCV.

[25]  Albert Gordo,et al.  Beyond Instance-Level Image Retrieval: Leveraging Captions to Learn a Global Visual Representation for Semantic Retrieval , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Giorgos Tolias,et al.  Fine-Tuning CNN Image Retrieval with No Human Annotation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[29]  Ji Wan,et al.  Deep Learning for Content-Based Image Retrieval: A Comprehensive Study , 2014, ACM Multimedia.

[30]  Yannis Avrithis,et al.  Image Search with Selective Match Kernels: Aggregation Across Single and Multiple Images , 2016, International Journal of Computer Vision.

[31]  Ngai-Man Cheung,et al.  Simultaneous Feature Aggregating and Hashing for Large-Scale Image Search , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Chunheng Wang,et al.  Spatial weighted fisher vector for image retrieval , 2017, 2017 IEEE International Conference on Multimedia and Expo (ICME).

[33]  Yulong Xu,et al.  MS-RMAC: Multiscale Regional Maximum Activation of Convolutions for Image Retrieval , 2017, IEEE Signal Processing Letters.

[34]  Qi Tian,et al.  Retrieval Oriented Deep Feature Learning With Complementary Supervision Mining , 2018, IEEE Transactions on Image Processing.

[35]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[36]  Qi Tian,et al.  Accurate Image Search with Multi-Scale Contextual Evidences , 2016, International Journal of Computer Vision.

[37]  Houqiang Li,et al.  Collaborative Image Relevance Learning for Visual Re-Ranking , 2021, IEEE Transactions on Multimedia.

[38]  Simon Osindero,et al.  Cross-Dimensional Weighting for Aggregated Deep Convolutional Features , 2015, ECCV Workshops.

[39]  Daniel Carlos Guimarães Pedronette,et al.  Graph-based selective rank fusion for unsupervised image retrieval , 2020, Pattern Recognit. Lett..

[40]  Yinghuan Shi,et al.  Modelling Diffusion Process by Deep Neural Networks for Image Retrieval , 2018, BMVC.

[41]  Horst Bischof,et al.  Diffusion Processes for Retrieval Revisited , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Qi Tian,et al.  SIFT Meets CNN: A Decade Survey of Instance Retrieval , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[43]  Bohyung Han,et al.  Large-Scale Image Retrieval with Attentive Deep Local Features , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[44]  Nicu Sebe,et al.  A Survey on Learning to Hash , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  Errui Ding,et al.  DOLG: Single-Stage Image Retrieval with Deep Orthogonal Fusion of Local and Global Features , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[46]  Nicu Sebe,et al.  Learning to Attack Real-World Models for Person Re-identification via Virtual-Guided Meta-Learning , 2021, AAAI.

[47]  R. Venkatesh Babu,et al.  Object level deep feature pooling for compact image representation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[48]  Nicu Sebe,et al.  Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.

[49]  Chong-Wah Ngo,et al.  A Hamming Embedding Kernel with Informative Bag-of-Visual Words for Video Semantic Indexing , 2014, TOMCCAP.

[50]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[51]  Maksims Volkovs,et al.  Explore-Exploit Graph Traversal for Image Retrieval , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Cordelia Schmid,et al.  Convolutional Patch Representations for Image Retrieval: An Unsupervised Approach , 2016, International Journal of Computer Vision.

[53]  Heng Tao Shen,et al.  Deep Region Hashing for Efficient Large-scale Instance Search from Images , 2017, ArXiv.

[54]  Ondrej Chum,et al.  CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples , 2016, ECCV.

[55]  Ling Shao,et al.  Deep Self-Taught Hashing for Image Retrieval , 2019, IEEE Transactions on Cybernetics.

[56]  Marcello Pelillo,et al.  Multi-feature Fusion for Image Retrieval Using Constrained Dominant Sets , 2018, Image Vis. Comput..

[57]  Victor S. Lempitsky,et al.  Aggregating Local Deep Features for Image Retrieval , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[58]  Chong-Wah Ngo,et al.  Hyperlink-Aware Object Retrieval , 2016, IEEE Transactions on Image Processing.

[59]  Kamalraj Subramaniam,et al.  A Review on Multiple Approaches to Medical Image Retrieval System , 2020 .

[60]  Ronan Sicre,et al.  Particular object retrieval with integral max-pooling of CNN activations , 2015, ICLR.

[61]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[62]  Jianping Fan,et al.  Spatial pyramid deep hashing for large-scale image retrieval , 2017, Neurocomputing.

[63]  Anastasios Tefas,et al.  Deep convolutional image retrieval: A general framework , 2018, Signal Process. Image Commun..

[64]  Shin'ichi Satoh,et al.  Faster R-CNN Features for Instance Search , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[65]  George Vogiatzis,et al.  Learning Non-Metric Visual Similarity for Image Retrieval , 2017, Image Vis. Comput..

[66]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[67]  Zi Huang,et al.  Quartet-net Learning for Visual Instance Retrieval , 2016, ACM Multimedia.

[68]  Ngai-Man Cheung,et al.  Embedding Based on Function Approximation for Large Scale Image Search , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Ling-Yu Duan,et al.  DeepHash for Image Instance Retrieval: Getting Regularization, Depth and Fine-Tuning Right , 2017, ICMR.

[70]  Cordelia Schmid,et al.  Local Convolutional Features with Unsupervised Training for Image Retrieval , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[71]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[72]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[73]  Antonio J. Plaza,et al.  Image Segmentation Using Deep Learning: A Survey , 2021, IEEE transactions on pattern analysis and machine intelligence.

[74]  Zi Huang,et al.  Feature Reconstruction by Laplacian Eigenmaps for Efficient Instance Search , 2018, ICMR.

[75]  Atsuto Maki,et al.  Factors of Transferability for a Generic ConvNet Representation , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Noel E. O'Connor,et al.  Bags of Local Convolutional Features for Scalable Instance Search , 2016, ICMR.

[77]  Miroslaw Bober,et al.  Siamese Network of Deep Fisher-Vector Descriptors for Image Retrieval , 2017, ArXiv.

[78]  Tinne Tuytelaars,et al.  On the Exploration of Incremental Learning for Fine-grained Image Retrieval , 2020, BMVC.

[79]  Torsten Sattler,et al.  D2-Net: A Trainable CNN for Joint Description and Detection of Local Features , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[80]  Savvas A. Chatzichristofis,et al.  Investigating the Vision Transformer Model for Image Retrieval Tasks , 2021, 2021 17th International Conference on Distributed Computing in Sensor Systems (DCOSS).

[81]  Tobias Weyand,et al.  Google Landmarks Dataset v2 – A Large-Scale Benchmark for Instance-Level Recognition and Retrieval , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Zi Huang,et al.  Local Deep Descriptors in Bag-of-Words for Image Retrieval , 2017, ACM Multimedia.

[83]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[84]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[85]  Yannis Avrithis,et al.  Revisiting Oxford and Paris: Large-Scale Image Retrieval Benchmarking , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[86]  Jianru Xue,et al.  Unifying Sum and Weighted Aggregations for Efficient Yet Effective Image Representation Computation , 2019, IEEE Transactions on Image Processing.

[87]  Yu Liu,et al.  DeepIndex for Accurate and Efficient Image Retrieval , 2015, ICMR.

[88]  Jia Li,et al.  Saliency Inside: Learning Attentive CNNs for Content-Based Image Retrieval , 2019, IEEE Transactions on Image Processing.

[89]  Chu-Song Chen,et al.  Cross-batch Reference Learning for Deep Classification and Retrieval , 2016, ACM Multimedia.

[90]  Qi Tian,et al.  Recent Advance in Content-based Image Retrieval: A Literature Survey , 2017, ArXiv.

[91]  Cees G. M. Snoek,et al.  Socializing the Semantic Gap: A Comparative Survey on Image Tag Assignment, Refinement and Retrieval , 2015, ArXiv.

[92]  Tiejun Huang,et al.  Deep Relative Distance Learning: Tell the Difference between Similar Vehicles , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Giorgos Tolias,et al.  Learning and aggregating deep local descriptors for instance-level recognition , 2020, ECCV.

[94]  Qi Tian,et al.  Regularized Diffusion Process on Bidirectional Context for Object Retrieval , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  Qi Tian,et al.  Query-adaptive late fusion for image search and person re-identification , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[96]  Junsong Yuan,et al.  Efficient Object Instance Search Using Fuzzy Objects Matching , 2017, AAAI.

[97]  Menglong Zhu,et al.  Detect-To-Retrieve: Efficient Regional Aggregation for Image Search , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[98]  Jack Sim,et al.  Unifying Deep Local and Global Features for Efficient Image Search , 2020, ArXiv.

[99]  Krystian Mikolajczyk,et al.  SOLAR: Second-Order Loss and Attention for Image Retrieval , 2020, ECCV.

[100]  Maksims Volkovs,et al.  Guided Similarity Separation for Image Retrieval , 2019, NeurIPS.

[101]  Larry S. Davis,et al.  An Analysis of Object Embeddings for Image Retrieval , 2019, ArXiv.

[102]  Yunde Jia,et al.  Unsupervised deep quantization for object instance search , 2019, Neurocomputing.

[103]  Kai Xu,et al.  Improving cross-dimensional weighting pooling with multi-scale feature fusion for image retrieval , 2019, Neurocomputing.

[104]  David Stutz,et al.  Neural Codes for Image Retrieval , 2015 .

[105]  Albert Gordo,et al.  Deep Image Retrieval: Learning Global Representations for Image Search , 2016, ECCV.

[106]  Andrew Zisserman,et al.  Return of the Devil in the Details: Delving Deep into Convolutional Nets , 2014, BMVC.

[107]  Jaeyoon Kim,et al.  Regional Attention Based Deep Feature for Image Retrieval , 2018, BMVC.

[108]  Shuang Wang,et al.  INSTRE: A New Benchmark for Instance-Level Object Retrieval and Recognition , 2015, ACM Trans. Multim. Comput. Commun. Appl..

[109]  Jon Almazán,et al.  Learning With Average Precision: Training Image Retrieval With a Listwise Loss , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[110]  Hongxun Yao,et al.  Exploiting the complementary strengths of multi-layer CNN features for image retrieval , 2017, Neurocomputing.

[111]  Jianru Xue,et al.  Improving Object Retrieval Quality by Integration of Similarity Propagation and Query Expansion , 2019, IEEE Transactions on Multimedia.

[112]  Zi Huang,et al.  Where to Focus: Query Adaptive Matching for Instance Retrieval Using Convolutional Feature Maps , 2016, ArXiv.

[113]  Michael Isard,et al.  Object retrieval with large vocabularies and fast spatial matching , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[114]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[115]  Matti Pietikäinen,et al.  Deep Learning for Generic Object Detection: A Survey , 2018, International Journal of Computer Vision.

[116]  Asifullah Khan,et al.  A survey of the recent architectures of deep convolutional neural networks , 2019, Artificial Intelligence Review.

[117]  Qi Tian,et al.  Scalable Person Re-identification: A Benchmark , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[118]  Pablo Piantanida,et al.  A Unifying Mutual Information View of Metric Learning: Cross-Entropy vs. Pairwise Losses , 2020, ECCV.

[119]  Svetlana Lazebnik,et al.  Multi-scale Orderless Pooling of Deep Convolutional Activation Features , 2014, ECCV.

[120]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[121]  Lei Zhou,et al.  Matchable Image Retrieval by Learning from Surface Reconstruction , 2018, ACCV.

[122]  Jiwen Lu,et al.  Unsupervised Deep Learning of Compact Binary Descriptors , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[123]  Xavier Giró-i-Nieto,et al.  Class-Weighted Convolutional Features for Visual Instance Search , 2017, BMVC.

[124]  Giorgos Tolias,et al.  Targeted Mismatch Adversarial Attack: Query With a Flower to Retrieve the Tower , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[125]  Jianru Xue,et al.  Deep Feature Aggregation and Image Re-Ranking With Heat Diffusion for Image Retrieval , 2018, IEEE Transactions on Multimedia.

[126]  Yao Zhao,et al.  Two-stream Attentive CNNs for Image Retrieval , 2017, ACM Multimedia.

[127]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[128]  Yong Rui,et al.  Image search—from thousands to billions in 20 years , 2013, TOMCCAP.

[129]  Yurong Liu,et al.  A survey of deep neural network architectures and their applications , 2017, Neurocomputing.

[130]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[131]  Larry S. Davis,et al.  Exploiting local features from deep networks for image retrieval , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[132]  Joachim Denzler,et al.  Content-based Image Retrieval and the Semantic Gap in the Deep Learning Era , 2020, ICPR Workshops.

[133]  Fei Su,et al.  Multiple Saliency and Channel Sensitivity Network for Aggregated Convolutional Feature , 2019, AAAI.

[134]  Hong Liu,et al.  Towards Visual Feature Translation , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Matthijs Douze,et al.  Deep Clustering for Unsupervised Learning of Visual Features , 2018, ECCV.

[136]  Shuqiang Jiang,et al.  A Two-Stage Triplet Network Training Framework for Image Retrieval , 2020, IEEE Transactions on Multimedia.

[137]  Jian Sun,et al.  Collaborative Index Embedding for Image Retrieval , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[138]  Qi Tian,et al.  Scalable Object Retrieval with Compact Image Representation from Generic Object Regions , 2015, ACM Trans. Multim. Comput. Commun. Appl..

[139]  Robert Pless,et al.  Deep Randomized Ensembles for Metric Learning , 2018, ECCV.

[140]  Hong Liu,et al.  Universal Perturbation Attack Against Image Retrieval , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[141]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[142]  Thomas Mensink,et al.  Image Classification with the Fisher Vector: Theory and Practice , 2013, International Journal of Computer Vision.

[143]  Ming-Hsuan Yang,et al.  Dynamic Match Kernel With Deep Convolutional Features for Image Retrieval , 2018, IEEE Transactions on Image Processing.

[144]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[145]  Shin'ichi Satoh,et al.  Efficient Image Retrieval via Decoupling Diffusion into Online and Offline Processing , 2018, AAAI.

[146]  Ngai-Man Cheung,et al.  From Selective Deep Convolutional Features to Compact Binary Representations for Image Retrieval , 2018, ACM Trans. Multim. Comput. Commun. Appl..

[147]  Giorgio Giacinto,et al.  Information fusion in content based image retrieval: A comprehensive overview , 2017, Inf. Fusion.

[148]  Atsuto Maki,et al.  A Baseline for Visual Instance Retrieval with Deep Convolutional Networks , 2014, ICLR 2015.

[149]  Abbes Amira,et al.  Semantic content-based image retrieval: A comprehensive study , 2015, J. Vis. Commun. Image Represent..

[150]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[151]  Abbes Amira,et al.  Content-based image retrieval with compact deep convolutional features , 2017, Neurocomputing.

[152]  Yang Song,et al.  Learning Fine-Grained Image Similarity with Deep Ranking , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[153]  Yannis Avrithis,et al.  Fast Spectral Ranking for Similarity Search , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[154]  Yannis Avrithis,et al.  Mining on Manifolds: Metric Learning Without Labels , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[155]  Jie Lin,et al.  Nested Invariance Pooling and RBM Hashing for Image Instance Retrieval , 2016, ICMR.

[156]  Miroslaw Bober,et al.  REMAP: Multi-Layer Entropy-Guided Pooling of Dense CNN Features for Image Retrieval , 2019, IEEE Transactions on Image Processing.

[157]  Albert Gordo,et al.  End-to-End Learning of Deep Visual Representations for Image Retrieval , 2016, International Journal of Computer Vision.

[158]  Yannis Avrithis,et al.  Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[159]  Jiri Matas,et al.  Working hard to know your neighbor's margins: Local descriptor learning loss , 2017, NIPS.

[160]  Cordelia Schmid,et al.  Convolutional Kernel Networks , 2014, NIPS.